// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/roi_align_kernel.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void RoiAlignKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& boxes, const paddle::optional& boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned, DenseTensor* out) { const auto& in_dims = x.dims(); int batch_size = in_dims[0]; int channels = in_dims[1]; int height = in_dims[2]; int width = in_dims[3]; int rois_num = boxes.dims()[0]; if (rois_num == 0) return; DenseTensor roi_batch_id_list; roi_batch_id_list.Resize({rois_num}); auto cplace = phi::CPUPlace(); int* roi_batch_id_data = dev_ctx.template HostAlloc(&roi_batch_id_list); auto xplace = dev_ctx.GetPlace(); int rois_batch_size = 0; int* cpu_lod = nullptr; if (boxes_num) { rois_batch_size = boxes_num->numel(); PADDLE_ENFORCE_EQ( rois_batch_size, batch_size, errors::InvalidArgument( "The rois_batch_size and imgs " "batch_size must be the same. But received rois_batch_size = %d, " "batch_size = %d", rois_batch_size, batch_size)); std::vector rois_num_list(rois_batch_size); paddle::memory::Copy(cplace, rois_num_list.data(), xplace, boxes_num->data(), sizeof(int) * rois_batch_size); cpu_lod = new int[rois_batch_size + 1]; cpu_lod[0] = 0; for (int i = 0; i < rois_batch_size; i++) { cpu_lod[i + 1] = cpu_lod[i] + rois_num_list[i]; } } else { auto lod = boxes.lod(); PADDLE_ENFORCE_EQ(lod.empty(), false, errors::InvalidArgument("Input(ROIs) in ROIAlignOp does " "not contain LoD information.")); auto rois_lod = lod.back(); rois_batch_size = rois_lod.size() - 1; PADDLE_ENFORCE_EQ( rois_batch_size, batch_size, errors::InvalidArgument( "The batch size of rois and batch size " "of images must be the same. But received rois batch size = %d, " "and images batch size = %d", rois_batch_size, batch_size)); int rois_num_with_lod = rois_lod[rois_batch_size]; PADDLE_ENFORCE_EQ( rois_num, rois_num_with_lod, errors::InvalidArgument( "The actual number of rois and the number of rois " "provided from Input(RoIsLoD) in RoIAlign must be the same." " But received actual number of rois is %d, and the number " "of rois from RoIsLoD is %d", rois_num, rois_num_with_lod)); for (int n = 0; n < rois_batch_size; ++n) { for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) { roi_batch_id_data[i] = n; } } cpu_lod = new int[rois_batch_size + 1]; for (int i = 0; i < rois_batch_size + 1; i++) { cpu_lod[i] = rois_lod[i]; } } int* roi_id_data = nullptr; int r = xpu_malloc(reinterpret_cast(&roi_id_data), (rois_batch_size + 1) * sizeof(int)); PADDLE_ENFORCE_XPU_SUCCESS(r); paddle::memory::Copy(xplace, roi_id_data, cplace, cpu_lod, (rois_batch_size + 1) * sizeof(int)); delete[] cpu_lod; r = xpu::roi_align(dev_ctx.x_context(), x.data(), dev_ctx.template Alloc(out), boxes.data(), roi_id_data, batch_size, channels, height, width, out->dims()[0], pooled_height, pooled_width, spatial_scale, sampling_ratio, true, aligned); PADDLE_ENFORCE_XDNN_SUCCESS(r, "roi_align_grad"); if (dev_ctx.x_context()->xpu_stream) { dev_ctx.Wait(); } xpu_free(roi_id_data); } } // namespace phi PD_REGISTER_KERNEL(roi_align, XPU, ALL_LAYOUT, phi::RoiAlignKernel, float) {}