# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import unittest import paddle from paddle import fluid from paddle.fluid import layers from paddle.distribution import * import math class DistributionNumpy(): def sample(self): raise NotImplementedError def entropy(self): raise NotImplementedError def kl_divergence(self, other): raise NotImplementedError def log_prob(self, value): raise NotImplementedError def probs(self, value): raise NotImplementedError class UniformNumpy(DistributionNumpy): def __init__(self, low, high): self.low = np.array(low) self.high = np.array(high) if str(self.low.dtype) not in ['float32', 'float64']: self.low = self.low.astype('float32') self.high = self.high.astype('float32') def sample(self, shape): shape = tuple(shape) + (self.low + self.high).shape return self.low + (np.random.uniform(size=shape) * (self.high - self.low)) def log_prob(self, value): lb = np.less(self.low, value).astype(self.low.dtype) ub = np.less(value, self.high).astype(self.low.dtype) return np.log(lb * ub) - np.log(self.high - self.low) def probs(self, value): lb = np.less(self.low, value).astype(self.low.dtype) ub = np.less(value, self.high).astype(self.low.dtype) return (lb * ub) / (self.high - self.low) def entropy(self): return np.log(self.high - self.low) class UniformTest(unittest.TestCase): def setUp(self, use_gpu=False, batch_size=5, dims=6): self.use_gpu = use_gpu if not use_gpu: self.place = fluid.CPUPlace() self.gpu_id = -1 else: self.place = fluid.CUDAPlace(0) self.gpu_id = 0 self.init_numpy_data(batch_size, dims) paddle.disable_static(self.place) self.init_dynamic_data(batch_size, dims) paddle.enable_static() self.test_program = fluid.Program() self.executor = fluid.Executor(self.place) self.init_static_data(batch_size, dims) def init_numpy_data(self, batch_size, dims): # low ans high are 'float' self.low_np = np.random.uniform(-2, 1) self.high_np = np.random.uniform(2, 4) self.values_np = np.array([1.0]).astype('float32') def init_dynamic_data(self, batch_size, dims): self.dynamic_low = self.low_np self.dynamic_high = self.high_np self.dynamic_values = paddle.to_tensor(self.values_np) def init_static_data(self, batch_size, dims): self.static_low = self.low_np self.static_high = self.high_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[], dtype='float32') def compare_with_numpy(self, fetch_list, sample_shape=7, tolerance=1e-6): sample, entropy, log_prob, probs = fetch_list np_uniform = UniformNumpy(self.low_np, self.high_np) np_sample = np_uniform.sample([sample_shape]) np_entropy = np_uniform.entropy() np_lp = np_uniform.log_prob(self.values_np) np_p = np_uniform.probs(self.values_np) np.testing.assert_equal(sample.shape, np_sample.shape) np.testing.assert_allclose( entropy, np_entropy, rtol=tolerance, atol=tolerance) np.testing.assert_allclose( log_prob, np_lp, rtol=tolerance, atol=tolerance) np.testing.assert_allclose(probs, np_p, rtol=tolerance, atol=tolerance) def test_uniform_distribution_dygraph(self, sample_shape=7, tolerance=1e-6): paddle.disable_static(self.place) uniform = Uniform(self.dynamic_low, self.dynamic_high) sample = uniform.sample([sample_shape]).numpy() entropy = uniform.entropy().numpy() log_prob = uniform.log_prob(self.dynamic_values).numpy() probs = uniform.probs(self.dynamic_values).numpy() fetch_list = [sample, entropy, log_prob, probs] self.compare_with_numpy(fetch_list) def test_uniform_distribution_static(self, sample_shape=7, tolerance=1e-6): paddle.enable_static() with fluid.program_guard(self.test_program): uniform = Uniform(self.static_low, self.static_high) sample = uniform.sample([sample_shape]) entropy = uniform.entropy() log_prob = uniform.log_prob(self.static_values) probs = uniform.probs(self.static_values) fetch_list = [sample, entropy, log_prob, probs] feed_vars = { 'low': self.low_np, 'high': self.high_np, 'values': self.values_np } self.executor.run(fluid.default_startup_program()) fetch_list = self.executor.run(program=self.test_program, feed=feed_vars, fetch_list=fetch_list) self.compare_with_numpy(fetch_list) class UniformTest2(UniformTest): def init_numpy_data(self, batch_size, dims): # low ans high are 'int' self.low_np = int(np.random.uniform(-2, 1)) self.high_np = int(np.random.uniform(2, 4)) self.values_np = np.array([1.0]).astype('float32') class UniformTest3(UniformTest): def init_numpy_data(self, batch_size, dims): # test broadcast: low is float, high is numpy.ndarray with dtype 'float32'. self.low_np = np.random.uniform(-2, 1) self.high_np = np.random.uniform(5.0, 15.0, (batch_size, dims)).astype('float32') self.values_np = np.random.randn(batch_size, dims).astype('float32') def init_static_data(self, batch_size, dims): self.static_low = self.low_np self.static_high = self.high_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class UniformTest4(UniformTest): def init_numpy_data(self, batch_size, dims): # low and high are numpy.ndarray with dtype 'float32'. self.low_np = np.random.randn(batch_size, dims).astype('float32') self.high_np = np.random.uniform(5.0, 15.0, (batch_size, dims)).astype('float32') self.values_np = np.random.randn(batch_size, dims).astype('float32') def init_static_data(self, batch_size, dims): self.static_low = self.low_np self.static_high = self.high_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class UniformTest5(UniformTest): def init_numpy_data(self, batch_size, dims): # low and high are numpy.ndarray with dtype 'float64'. self.low_np = np.random.randn(batch_size, dims).astype('float64') self.high_np = np.random.uniform(5.0, 15.0, (batch_size, dims)).astype('float64') self.values_np = np.random.randn(batch_size, dims).astype('float64') def init_dynamic_data(self, batch_size, dims): self.dynamic_low = self.low_np self.dynamic_high = self.high_np self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float64') def init_static_data(self, batch_size, dims): self.static_low = self.low_np self.static_high = self.high_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float64') class UniformTest6(UniformTest): def init_numpy_data(self, batch_size, dims): # low and high are Tensor with dtype 'VarType.FP32'. self.low_np = np.random.randn(batch_size, dims).astype('float32') self.high_np = np.random.uniform(5.0, 15.0, (batch_size, dims)).astype('float32') self.values_np = np.random.randn(batch_size, dims).astype('float32') def init_dynamic_data(self, batch_size, dims): self.dynamic_low = paddle.to_tensor(self.low_np) self.dynamic_high = paddle.to_tensor(self.high_np) self.dynamic_values = paddle.to_tensor(self.values_np) def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.static_low = layers.data( name='low', shape=[dims], dtype='float32') self.static_high = layers.data( name='high', shape=[dims], dtype='float32') self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class UniformTest7(UniformTest): def init_numpy_data(self, batch_size, dims): # low and high are Tensor with dtype 'VarType.FP64'. self.low_np = np.random.randn(batch_size, dims).astype('float64') self.high_np = np.random.uniform(5.0, 15.0, (batch_size, dims)).astype('float64') self.values_np = np.random.randn(batch_size, dims).astype('float64') def init_dynamic_data(self, batch_size, dims): self.dynamic_low = paddle.to_tensor(self.low_np, dtype='float64') self.dynamic_high = paddle.to_tensor(self.high_np, dtype='float64') self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float64') def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.static_low = layers.data( name='low', shape=[dims], dtype='float64') self.static_high = layers.data( name='high', shape=[dims], dtype='float64') self.static_values = layers.data( name='values', shape=[dims], dtype='float64') class UniformTest8(UniformTest): def init_numpy_data(self, batch_size, dims): # low and high are Tensor with dtype 'VarType.FP64'. value's dtype is 'VarType.FP32'. self.low_np = np.random.randn(batch_size, dims).astype('float64') self.high_np = np.random.uniform(5.0, 15.0, (batch_size, dims)).astype('float64') self.values_np = np.random.randn(batch_size, dims).astype('float32') def init_dynamic_data(self, batch_size, dims): self.dynamic_low = paddle.to_tensor(self.low_np, dtype='float64') self.dynamic_high = paddle.to_tensor(self.high_np, dtype='float64') self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float32') def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.static_low = layers.data( name='low', shape=[dims], dtype='float64') self.static_high = layers.data( name='high', shape=[dims], dtype='float64') self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class UniformTest9(UniformTest): def init_numpy_data(self, batch_size, dims): # low and high are numpy.ndarray with dtype 'float32'. # high < low. self.low_np = np.random.randn(batch_size, dims).astype('float32') self.high_np = np.random.uniform(-10.0, -5.0, (batch_size, dims)).astype('float32') self.values_np = np.random.randn(batch_size, dims).astype('float32') def init_static_data(self, batch_size, dims): self.static_low = self.low_np self.static_high = self.high_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class UniformTest10(UniformTest): def init_numpy_data(self, batch_size, dims): # low and high are list. self.low_np = np.random.randn(batch_size, dims).astype('float32').tolist() self.high_np = np.random.uniform( 5.0, 15.0, (batch_size, dims)).astype('float32').tolist() self.values_np = np.random.randn(batch_size, dims).astype('float32') def init_static_data(self, batch_size, dims): self.static_low = self.low_np self.static_high = self.high_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class UniformTest11(UniformTest): def init_numpy_data(self, batch_size, dims): # low and high are tuple. self.low_np = tuple( np.random.randn(batch_size, dims).astype('float32').tolist()) self.high_np = tuple( np.random.uniform(5.0, 15.0, (batch_size, dims)).astype('float32') .tolist()) self.values_np = np.random.randn(batch_size, dims).astype('float32') def init_static_data(self, batch_size, dims): self.static_low = self.low_np self.static_high = self.high_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class UniformTestSample(unittest.TestCase): def setUp(self): self.init_param() def init_param(self): self.low = 3.0 self.high = 4.0 def test_uniform_sample(self): paddle.disable_static() uniform = Uniform(low=self.low, high=self.high) s = uniform.sample([100]) self.assertTrue((s >= self.low).all()) self.assertTrue((s < self.high).all()) paddle.enable_static() class UniformTestSample2(UniformTestSample): def init_param(self): self.low = -5.0 self.high = 2.0 class NormalNumpy(DistributionNumpy): def __init__(self, loc, scale): self.loc = np.array(loc) self.scale = np.array(scale) if str(self.loc.dtype) not in ['float32', 'float64']: self.loc = self.loc.astype('float32') self.scale = self.scale.astype('float32') def sample(self, shape): shape = tuple(shape) + (self.loc + self.scale).shape return self.loc + (np.random.randn(*shape) * self.scale) def log_prob(self, value): var = self.scale * self.scale log_scale = np.log(self.scale) return -((value - self.loc) * (value - self.loc)) / ( 2. * var) - log_scale - math.log(math.sqrt(2. * math.pi)) def probs(self, value): var = self.scale * self.scale return np.exp(-1. * ((value - self.loc) * (value - self.loc)) / (2. * var)) / (math.sqrt(2 * math.pi) * self.scale) def entropy(self): return 0.5 + 0.5 * np.log( np.array(2. * math.pi).astype(self.loc.dtype)) + np.log(self.scale) def kl_divergence(self, other): var_ratio = (self.scale / other.scale) var_ratio = var_ratio * var_ratio t1 = ((self.loc - other.loc) / other.scale) t1 = (t1 * t1) return 0.5 * (var_ratio + t1 - 1 - np.log(var_ratio)) class NormalTest(unittest.TestCase): def setUp(self, use_gpu=False, batch_size=2, dims=3): self.use_gpu = use_gpu if not use_gpu: self.place = fluid.CPUPlace() self.gpu_id = -1 else: self.place = fluid.CUDAPlace(0) self.gpu_id = 0 self.init_numpy_data(batch_size, dims) paddle.disable_static(self.place) self.init_dynamic_data(batch_size, dims) paddle.enable_static() self.test_program = fluid.Program() self.executor = fluid.Executor(self.place) self.init_static_data(batch_size, dims) def init_numpy_data(self, batch_size, dims): # loc ans scale are 'float' self.loc_np = (np.random.ranf() - 0.5) * 4 self.scale_np = (np.random.ranf() - 0.5) * 4 while self.scale_np < 0: self.scale_np = (np.random.ranf() - 0.5) * 4 # used to construct another Normal object to calculate kl_divergence self.other_loc_np = (np.random.ranf() - 0.5) * 4 self.other_scale_np = (np.random.ranf() - 0.5) * 4 while self.other_scale_np < 0: self.other_scale_np = (np.random.ranf() - 0.5) * 4 self.values_np = np.random.ranf(1).astype('float32') def init_dynamic_data(self, batch_size, dims): self.dynamic_loc = self.loc_np self.dynamic_scale = self.scale_np self.dynamic_other_loc = self.other_loc_np self.dynamic_other_scale = self.other_scale_np self.dynamic_values = paddle.to_tensor(self.values_np) def init_static_data(self, batch_size, dims): self.static_loc = self.loc_np self.static_scale = self.scale_np self.static_other_loc = self.other_loc_np self.static_other_scale = self.other_scale_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[], dtype='float32') def compare_with_numpy(self, fetch_list, sample_shape=7, tolerance=1e-6): sample, entropy, log_prob, probs, kl = fetch_list np_normal = NormalNumpy(self.loc_np, self.scale_np) np_sample = np_normal.sample([sample_shape]) np_entropy = np_normal.entropy() np_lp = np_normal.log_prob(self.values_np) np_p = np_normal.probs(self.values_np) np_other_normal = NormalNumpy(self.other_loc_np, self.other_scale_np) np_kl = np_normal.kl_divergence(np_other_normal) # Because assign op does not support the input of numpy.ndarray whose dtype is FP64. # When loc and scale are FP64 numpy.ndarray, we need to use assign op to convert it # to FP32 Tensor. And then use cast op to convert it to a FP64 Tensor. # There is a loss of accuracy in this conversion. # So set the tolerance from 1e-6 to 1e-4. log_tolerance = 1e-4 np.testing.assert_equal(sample.shape, np_sample.shape) np.testing.assert_allclose( entropy, np_entropy, rtol=tolerance, atol=tolerance) np.testing.assert_allclose( log_prob, np_lp, rtol=log_tolerance, atol=log_tolerance) np.testing.assert_allclose( probs, np_p, rtol=log_tolerance, atol=log_tolerance) np.testing.assert_allclose( kl, np_kl, rtol=log_tolerance, atol=log_tolerance) def test_normal_distribution_dygraph(self, sample_shape=7, tolerance=1e-6): paddle.disable_static(self.place) normal = Normal(self.dynamic_loc, self.dynamic_scale) sample = normal.sample([sample_shape]).numpy() entropy = normal.entropy().numpy() log_prob = normal.log_prob(self.dynamic_values).numpy() probs = normal.probs(self.dynamic_values).numpy() other_normal = Normal(self.dynamic_other_loc, self.dynamic_other_scale) kl = normal.kl_divergence(other_normal).numpy() fetch_list = [sample, entropy, log_prob, probs, kl] self.compare_with_numpy(fetch_list) def test_normal_distribution_static(self, sample_shape=7, tolerance=1e-6): paddle.enable_static() with fluid.program_guard(self.test_program): normal = Normal(self.static_loc, self.static_scale) sample = normal.sample([sample_shape]) entropy = normal.entropy() log_prob = normal.log_prob(self.static_values) probs = normal.probs(self.static_values) other_normal = Normal(self.static_other_loc, self.static_other_scale) kl = normal.kl_divergence(other_normal) fetch_list = [sample, entropy, log_prob, probs, kl] feed_vars = { 'loc': self.loc_np, 'scale': self.scale_np, 'values': self.values_np, 'other_loc': self.other_loc_np, 'other_scale': self.other_scale_np } self.executor.run(fluid.default_startup_program()) fetch_list = self.executor.run(program=self.test_program, feed=feed_vars, fetch_list=fetch_list) self.compare_with_numpy(fetch_list) class NormalTest2(NormalTest): def init_numpy_data(self, batch_size, dims): # loc ans scale are 'int' self.loc_np = int((np.random.ranf() - 0.5) * 8) self.scale_np = int((np.random.ranf() - 0.5) * 8) while self.scale_np < 0: self.scale_np = int((np.random.ranf() - 0.5) * 8) # used to construct another Normal object to calculate kl_divergence self.other_loc_np = int((np.random.ranf() - 0.5) * 8) self.other_scale_np = int((np.random.ranf() - 0.5) * 8) while self.other_scale_np < 0: self.other_scale_np = int((np.random.ranf() - 0.5) * 8) self.values_np = np.random.ranf(1).astype('float32') class NormalTest3(NormalTest): def init_numpy_data(self, batch_size, dims): # test broadcast: loc is float, scale is numpy.ndarray with dtype 'float32'. self.loc_np = (np.random.ranf() - 0.5) * 4 self.scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.scale_np > 0): self.scale_np = np.random.randn(batch_size, dims).astype('float32') self.values_np = np.random.randn(batch_size, dims).astype('float32') # used to construct another Normal object to calculate kl_divergence self.other_loc_np = (np.random.ranf() - 0.5) * 4 self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.scale_np > 0): self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') def init_static_data(self, batch_size, dims): self.static_loc = self.loc_np self.static_scale = self.scale_np self.static_other_loc = self.other_loc_np self.static_other_scale = self.other_scale_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class NormalTest4(NormalTest): def init_numpy_data(self, batch_size, dims): # loc and scale are numpy.ndarray with dtype 'float32'. self.loc_np = np.random.randn(batch_size, dims).astype('float32') self.scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.scale_np > 0): self.scale_np = np.random.randn(batch_size, dims).astype('float32') self.values_np = np.random.randn(batch_size, dims).astype('float32') # used to construct another Normal object to calculate kl_divergence self.other_loc_np = np.random.randn(batch_size, dims).astype('float32') self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.scale_np > 0): self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') def init_static_data(self, batch_size, dims): self.static_loc = self.loc_np self.static_scale = self.scale_np self.static_other_loc = self.other_loc_np self.static_other_scale = self.other_scale_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class NormalTest5(NormalTest): def init_numpy_data(self, batch_size, dims): # loc and scale are numpy.ndarray with dtype 'float64'. self.loc_np = np.random.randn(batch_size, dims).astype('float64') self.scale_np = np.random.randn(batch_size, dims).astype('float64') while not np.all(self.scale_np > 0): self.scale_np = np.random.randn(batch_size, dims).astype('float64') self.values_np = np.random.randn(batch_size, dims).astype('float64') # used to construct another Normal object to calculate kl_divergence self.other_loc_np = np.random.randn(batch_size, dims).astype('float64') self.other_scale_np = np.random.randn(batch_size, dims).astype('float64') while not np.all(self.scale_np > 0): self.other_scale_np = np.random.randn(batch_size, dims).astype('float64') def init_dynamic_data(self, batch_size, dims): self.dynamic_loc = self.loc_np self.dynamic_scale = self.scale_np self.dynamic_other_loc = self.other_loc_np self.dynamic_other_scale = self.other_scale_np self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float64') def init_static_data(self, batch_size, dims): self.static_loc = self.loc_np self.static_scale = self.scale_np self.static_other_loc = self.other_loc_np self.static_other_scale = self.other_scale_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float64') class NormalTest6(NormalTest): def init_numpy_data(self, batch_size, dims): # loc and scale are Tensor with dtype 'VarType.FP32'. self.loc_np = np.random.randn(batch_size, dims).astype('float32') self.scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.scale_np > 0): self.scale_np = np.random.randn(batch_size, dims).astype('float32') self.values_np = np.random.randn(batch_size, dims).astype('float32') # used to construct another Normal object to calculate kl_divergence self.other_loc_np = np.random.randn(batch_size, dims).astype('float32') self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.scale_np > 0): self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') def init_dynamic_data(self, batch_size, dims): self.dynamic_loc = paddle.to_tensor(self.loc_np) self.dynamic_scale = paddle.to_tensor(self.scale_np) self.dynamic_values = paddle.to_tensor(self.values_np) self.dynamic_other_loc = paddle.to_tensor(self.other_loc_np) self.dynamic_other_scale = paddle.to_tensor(self.other_scale_np) def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.static_loc = layers.data( name='loc', shape=[dims], dtype='float32') self.static_scale = layers.data( name='scale', shape=[dims], dtype='float32') self.static_values = layers.data( name='values', shape=[dims], dtype='float32') self.static_other_loc = layers.data( name='other_loc', shape=[dims], dtype='float32') self.static_other_scale = layers.data( name='other_scale', shape=[dims], dtype='float32') class NormalTest7(NormalTest): def init_numpy_data(self, batch_size, dims): # loc and scale are Tensor with dtype 'VarType.FP64'. self.loc_np = np.random.randn(batch_size, dims).astype('float64') self.scale_np = np.random.randn(batch_size, dims).astype('float64') while not np.all(self.scale_np > 0): self.scale_np = np.random.randn(batch_size, dims).astype('float64') self.values_np = np.random.randn(batch_size, dims).astype('float64') # used to construct another Normal object to calculate kl_divergence self.other_loc_np = np.random.randn(batch_size, dims).astype('float64') self.other_scale_np = np.random.randn(batch_size, dims).astype('float64') while not np.all(self.scale_np > 0): self.other_scale_np = np.random.randn(batch_size, dims).astype('float64') def init_dynamic_data(self, batch_size, dims): self.dynamic_loc = paddle.to_tensor(self.loc_np, dtype='float64') self.dynamic_scale = paddle.to_tensor(self.scale_np, dtype='float64') self.dynamic_values = paddle.to_tensor(self.values_np, dtype='float64') self.dynamic_other_loc = paddle.to_tensor( self.other_loc_np, dtype='float64') self.dynamic_other_scale = paddle.to_tensor( self.other_scale_np, dtype='float64') def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.static_loc = layers.data( name='loc', shape=[dims], dtype='float64') self.static_scale = layers.data( name='scale', shape=[dims], dtype='float64') self.static_values = layers.data( name='values', shape=[dims], dtype='float64') self.static_other_loc = layers.data( name='other_loc', shape=[dims], dtype='float64') self.static_other_scale = layers.data( name='other_scale', shape=[dims], dtype='float64') class NormalTest8(NormalTest): def init_numpy_data(self, batch_size, dims): # loc and scale are Tensor with dtype 'VarType.FP64'. value's dtype is 'VarType.FP32'. self.loc_np = np.random.randn(batch_size, dims).astype('float64') self.scale_np = np.random.randn(batch_size, dims).astype('float64') while not np.all(self.scale_np > 0): self.scale_np = np.random.randn(batch_size, dims).astype('float64') self.values_np = np.random.randn(batch_size, dims).astype('float32') # used to construct another Normal object to calculate kl_divergence self.other_loc_np = np.random.randn(batch_size, dims).astype('float64') self.other_scale_np = np.random.randn(batch_size, dims).astype('float64') while not np.all(self.scale_np > 0): self.other_scale_np = np.random.randn(batch_size, dims).astype('float64') def init_dynamic_data(self, batch_size, dims): self.dynamic_loc = paddle.to_tensor(self.loc_np, dtype='float64') self.dynamic_scale = paddle.to_tensor(self.scale_np, dtype='float64') self.dynamic_values = paddle.to_tensor(self.values_np) self.dynamic_other_loc = paddle.to_tensor( self.other_loc_np, dtype='float64') self.dynamic_other_scale = paddle.to_tensor( self.other_scale_np, dtype='float64') def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.static_loc = layers.data( name='loc', shape=[dims], dtype='float64') self.static_scale = layers.data( name='scale', shape=[dims], dtype='float64') self.static_values = layers.data( name='values', shape=[dims], dtype='float32') self.static_other_loc = layers.data( name='other_loc', shape=[dims], dtype='float64') self.static_other_scale = layers.data( name='other_scale', shape=[dims], dtype='float64') class NormalTest9(NormalTest): def init_numpy_data(self, batch_size, dims): # loc and scale are list. self.loc_np = np.random.randn(batch_size, dims).astype('float32').tolist() self.scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.scale_np > 0): self.scale_np = np.random.randn(batch_size, dims).astype('float32') self.scale_np = self.scale_np.tolist() self.values_np = np.random.randn(batch_size, dims).astype('float32') # used to construct another Normal object to calculate kl_divergence self.other_loc_np = np.random.randn(batch_size, dims).astype('float32').tolist() self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.other_scale_np > 0): self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') self.other_scale_np = self.other_scale_np.tolist() def init_static_data(self, batch_size, dims): self.static_loc = self.loc_np self.static_scale = self.scale_np self.static_other_loc = self.other_loc_np self.static_other_scale = self.other_scale_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class NormalTest10(NormalTest): def init_numpy_data(self, batch_size, dims): # loc and scale are tuple. self.loc_np = tuple( np.random.randn(batch_size, dims).astype('float32').tolist()) self.scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.scale_np > 0): self.scale_np = np.random.randn(batch_size, dims).astype('float32') self.scale_np = tuple(self.scale_np.tolist()) self.values_np = np.random.randn(batch_size, dims).astype('float32') # used to construct another Normal object to calculate kl_divergence self.other_loc_np = tuple( np.random.randn(batch_size, dims).astype('float32').tolist()) self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') while not np.all(self.other_scale_np > 0): self.other_scale_np = np.random.randn(batch_size, dims).astype('float32') self.other_scale_np = tuple(self.other_scale_np.tolist()) def init_static_data(self, batch_size, dims): self.static_loc = self.loc_np self.static_scale = self.scale_np self.static_other_loc = self.other_loc_np self.static_other_scale = self.other_scale_np with fluid.program_guard(self.test_program): self.static_values = layers.data( name='values', shape=[dims], dtype='float32') class CategoricalNumpy(DistributionNumpy): def __init__(self, logits): self.logits = np.array(logits).astype('float32') def entropy(self): logits = self.logits - np.max(self.logits, axis=-1, keepdims=True) e_logits = np.exp(logits) z = np.sum(e_logits, axis=-1, keepdims=True) prob = e_logits / z return -1. * np.sum(prob * (logits - np.log(z)), axis=-1, keepdims=True) def kl_divergence(self, other): logits = self.logits - np.max(self.logits, axis=-1, keepdims=True) other_logits = other.logits - np.max( other.logits, axis=-1, keepdims=True) e_logits = np.exp(logits) other_e_logits = np.exp(other_logits) z = np.sum(e_logits, axis=-1, keepdims=True) other_z = np.sum(other_e_logits, axis=-1, keepdims=True) prob = e_logits / z return np.sum(prob * (logits - np.log(z) - other_logits \ + np.log(other_z)), axis=-1, keepdims=True) class CategoricalTest(unittest.TestCase): def setUp(self, use_gpu=False, batch_size=3, dims=5): self.use_gpu = use_gpu if not use_gpu: self.place = fluid.CPUPlace() self.gpu_id = -1 else: self.place = fluid.CUDAPlace(0) self.gpu_id = 0 self.batch_size = batch_size self.dims = dims self.init_numpy_data(batch_size, dims) paddle.disable_static(self.place) self.init_dynamic_data(batch_size, dims) paddle.enable_static() self.test_program = fluid.Program() self.executor = fluid.Executor(self.place) self.init_static_data(batch_size, dims) def init_numpy_data(self, batch_size, dims): # input logtis is 2-D Tensor # value used in probs and log_prob method is 1-D Tensor self.logits_np = np.random.rand(batch_size, dims).astype('float32') self.other_logits_np = np.random.rand(batch_size, dims).astype('float32') self.value_np = np.array([2, 1, 3]).astype('int64') self.logits_shape = [batch_size, dims] # dist_shape = logits_shape[:-1], it represents the number of # different distributions. self.dist_shape = [batch_size] # sample shape represents the number of samples self.sample_shape = [2, 4] # value used in probs and log_prob method # If value is 1-D and logits is 2-D or higher dimension, value will be # broadcasted to have the same number of distributions with logits. # If value is 2-D or higher dimentsion, it should have the same number # of distributions with logtis. ``value[:-1] = logits[:-1] self.value_shape = [3] def init_dynamic_data(self, batch_size, dims): self.logits = paddle.to_tensor(self.logits_np) self.other_logits = paddle.to_tensor(self.other_logits_np) self.value = paddle.to_tensor(self.value_np) def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.logits_static = fluid.data( name='logits', shape=self.logits_shape, dtype='float32') self.other_logits_static = fluid.data( name='other_logits', shape=self.logits_shape, dtype='float32') self.value_static = fluid.data( name='value', shape=self.value_shape, dtype='int64') def get_numpy_selected_probs(self, probability): np_probs = np.zeros(self.dist_shape + self.value_shape) for i in range(self.batch_size): for j in range(3): np_probs[i][j] = probability[i][self.value_np[j]] return np_probs def compare_with_numpy(self, fetch_list, tolerance=1e-6): sample, entropy, kl, probs, log_prob = fetch_list log_tolerance = 1e-4 np.testing.assert_equal(sample.shape, self.sample_shape + self.dist_shape) np_categorical = CategoricalNumpy(self.logits_np) np_other_categorical = CategoricalNumpy(self.other_logits_np) np_entropy = np_categorical.entropy() np_kl = np_categorical.kl_divergence(np_other_categorical) np.testing.assert_allclose( entropy, np_entropy, rtol=log_tolerance, atol=log_tolerance) np.testing.assert_allclose( kl, np_kl, rtol=log_tolerance, atol=log_tolerance) sum_dist = np.sum(self.logits_np, axis=-1, keepdims=True) probability = self.logits_np / sum_dist np_probs = self.get_numpy_selected_probs(probability) np_log_prob = np.log(np_probs) np.testing.assert_allclose( probs, np_probs, rtol=tolerance, atol=tolerance) np.testing.assert_allclose( log_prob, np_log_prob, rtol=tolerance, atol=tolerance) def test_categorical_distribution_dygraph(self, tolerance=1e-6): paddle.disable_static(self.place) categorical = Categorical(self.logits) other_categorical = Categorical(self.other_logits) sample = categorical.sample(self.sample_shape).numpy() entropy = categorical.entropy().numpy() kl = categorical.kl_divergence(other_categorical).numpy() probs = categorical.probs(self.value).numpy() log_prob = categorical.log_prob(self.value).numpy() fetch_list = [sample, entropy, kl, probs, log_prob] self.compare_with_numpy(fetch_list) def test_categorical_distribution_static(self, tolerance=1e-6): paddle.enable_static() with fluid.program_guard(self.test_program): categorical = Categorical(self.logits_static) other_categorical = Categorical(self.other_logits_static) sample = categorical.sample(self.sample_shape) entropy = categorical.entropy() kl = categorical.kl_divergence(other_categorical) probs = categorical.probs(self.value_static) log_prob = categorical.log_prob(self.value_static) fetch_list = [sample, entropy, kl, probs, log_prob] feed_vars = { 'logits': self.logits_np, 'other_logits': self.other_logits_np, 'value': self.value_np } self.executor.run(fluid.default_startup_program()) fetch_list = self.executor.run(program=self.test_program, feed=feed_vars, fetch_list=fetch_list) self.compare_with_numpy(fetch_list) class CategoricalTest2(CategoricalTest): def init_numpy_data(self, batch_size, dims): # input logtis is 2-D Tensor with dtype Float64 # value used in probs and log_prob method is 1-D Tensor self.logits_np = np.random.rand(batch_size, dims).astype('float64') self.other_logits_np = np.random.rand(batch_size, dims).astype('float64') self.value_np = np.array([2, 1, 3]).astype('int64') self.logits_shape = [batch_size, dims] self.dist_shape = [batch_size] self.sample_shape = [2, 4] self.value_shape = [3] def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.logits_static = fluid.data( name='logits', shape=self.logits_shape, dtype='float64') self.other_logits_static = fluid.data( name='other_logits', shape=self.logits_shape, dtype='float64') self.value_static = fluid.data( name='value', shape=self.value_shape, dtype='int64') class CategoricalTest3(CategoricalTest): def init_dynamic_data(self, batch_size, dims): # input logtis is 2-D numpy.ndarray with dtype Float32 # value used in probs and log_prob method is 1-D Tensor self.logits = self.logits_np self.other_logits = self.other_logits_np self.value = paddle.to_tensor(self.value_np) def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.logits_static = self.logits_np self.other_logits_static = self.other_logits_np self.value_static = fluid.data( name='value', shape=self.value_shape, dtype='int64') class CategoricalTest4(CategoricalTest): def init_numpy_data(self, batch_size, dims): # input logtis is 2-D numpy.ndarray with dtype Float64 # value used in probs and log_prob method is 1-D Tensor self.logits_np = np.random.rand(batch_size, dims).astype('float64') self.other_logits_np = np.random.rand(batch_size, dims).astype('float64') self.value_np = np.array([2, 1, 3]).astype('int64') self.logits_shape = [batch_size, dims] self.dist_shape = [batch_size] self.sample_shape = [2, 4] self.value_shape = [3] def init_dynamic_data(self, batch_size, dims): self.logits = self.logits_np self.other_logits = self.other_logits_np self.value = paddle.to_tensor(self.value_np) def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.logits_static = self.logits_np self.other_logits_static = self.other_logits_np self.value_static = fluid.data( name='value', shape=self.value_shape, dtype='int64') # test shape of logits and value used in probs and log_prob method class CategoricalTest5(CategoricalTest): def init_numpy_data(self, batch_size, dims): # input logtis is 1-D Tensor # value used in probs and log_prob method is 1-D Tensor self.logits_np = np.random.rand(dims).astype('float32') self.other_logits_np = np.random.rand(dims).astype('float32') self.value_np = np.array([2, 1, 3]).astype('int64') self.logits_shape = [dims] self.dist_shape = [] self.sample_shape = [2, 4] self.value_shape = [3] def get_numpy_selected_probs(self, probability): np_probs = np.zeros(self.value_shape) for i in range(3): np_probs[i] = probability[self.value_np[i]] return np_probs class CategoricalTest6(CategoricalTest): def init_numpy_data(self, batch_size, dims): # input logtis is 2-D Tensor # value used in probs and log_prob method has the same number of batches with input self.logits_np = np.random.rand(3, 5).astype('float32') self.other_logits_np = np.random.rand(3, 5).astype('float32') self.value_np = np.array([[2, 1], [0, 3], [2, 3]]).astype('int64') self.logits_shape = [3, 5] self.dist_shape = [3] self.sample_shape = [2, 4] self.value_shape = [3, 2] def get_numpy_selected_probs(self, probability): np_probs = np.zeros(self.value_shape) for i in range(3): for j in range(2): np_probs[i][j] = probability[i][self.value_np[i][j]] return np_probs class CategoricalTest7(CategoricalTest): def init_numpy_data(self, batch_size, dims): # input logtis is 3-D Tensor # value used in probs and log_prob method has the same number of distribuions with input self.logits_np = np.random.rand(3, 2, 5).astype('float32') self.other_logits_np = np.random.rand(3, 2, 5).astype('float32') self.value_np = np.array([2, 1, 3]).astype('int64') self.logits_shape = [3, 2, 5] self.dist_shape = [3, 2] self.sample_shape = [2, 4] self.value_shape = [3] def get_numpy_selected_probs(self, probability): np_probs = np.zeros(self.dist_shape + self.value_shape) for i in range(3): for j in range(2): for k in range(3): np_probs[i][j][k] = probability[i][j][self.value_np[k]] return np_probs class CategoricalTest8(CategoricalTest): def init_dynamic_data(self, batch_size, dims): # input logtis is 2-D list # value used in probs and log_prob method is 1-D Tensor self.logits = self.logits_np.tolist() self.other_logits = self.other_logits_np.tolist() self.value = paddle.to_tensor(self.value_np) def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.logits_static = self.logits_np.tolist() self.other_logits_static = self.other_logits_np.tolist() self.value_static = fluid.data( name='value', shape=self.value_shape, dtype='int64') class CategoricalTest9(CategoricalTest): def init_dynamic_data(self, batch_size, dims): # input logtis is 2-D tuple # value used in probs and log_prob method is 1-D Tensor self.logits = tuple(self.logits_np.tolist()) self.other_logits = tuple(self.other_logits_np.tolist()) self.value = paddle.to_tensor(self.value_np) def init_static_data(self, batch_size, dims): with fluid.program_guard(self.test_program): self.logits_static = tuple(self.logits_np.tolist()) self.other_logits_static = tuple(self.other_logits_np.tolist()) self.value_static = fluid.data( name='value', shape=self.value_shape, dtype='int64') class DistributionTestError(unittest.TestCase): def test_distribution_error(self): distribution = Distribution() self.assertRaises(NotImplementedError, distribution.sample) self.assertRaises(NotImplementedError, distribution.entropy) normal = Normal(0.0, 1.0) self.assertRaises(NotImplementedError, distribution.kl_divergence, normal) value_npdata = np.array([0.8], dtype="float32") value_tensor = layers.create_tensor(dtype="float32") self.assertRaises(NotImplementedError, distribution.log_prob, value_tensor) self.assertRaises(NotImplementedError, distribution.probs, value_tensor) def test_normal_error(self): paddle.enable_static() normal = Normal(0.0, 1.0) value = [1.0, 2.0] # type of value must be variable self.assertRaises(TypeError, normal.log_prob, value) value = [1.0, 2.0] # type of value must be variable self.assertRaises(TypeError, normal.probs, value) shape = 1.0 # type of shape must be list self.assertRaises(TypeError, normal.sample, shape) seed = 1.0 # type of seed must be int self.assertRaises(TypeError, normal.sample, [2, 3], seed) normal_other = Uniform(1.0, 2.0) # type of other must be an instance of Normal self.assertRaises(TypeError, normal.kl_divergence, normal_other) def test_uniform_error(self): paddle.enable_static() uniform = Uniform(0.0, 1.0) value = [1.0, 2.0] # type of value must be variable self.assertRaises(TypeError, uniform.log_prob, value) value = [1.0, 2.0] # type of value must be variable self.assertRaises(TypeError, uniform.probs, value) shape = 1.0 # type of shape must be list self.assertRaises(TypeError, uniform.sample, shape) seed = 1.0 # type of seed must be int self.assertRaises(TypeError, uniform.sample, [2, 3], seed) def test_categorical_error(self): paddle.enable_static() categorical = Categorical([0.4, 0.6]) value = [1, 0] # type of value must be variable self.assertRaises(AttributeError, categorical.log_prob, value) value = [1, 0] # type of value must be variable self.assertRaises(AttributeError, categorical.probs, value) shape = 1.0 # type of shape must be list self.assertRaises(TypeError, categorical.sample, shape) categorical_other = Uniform(1.0, 2.0) # type of other must be an instance of Categorical self.assertRaises(TypeError, categorical.kl_divergence, categorical_other) def test_shape_not_match_error(): # shape of value must match shape of logits # value_shape[:-1] == logits_shape[:-1] paddle.disable_static() logits = paddle.rand([3, 5]) cat = Categorical(logits) value = paddle.to_tensor([[2, 1, 3], [3, 2, 1]], dtype='int64') cat.log_prob(value) self.assertRaises(ValueError, test_shape_not_match_error) class DistributionTestName(unittest.TestCase): def get_prefix(self, string): return (string.split('.')[0]) def test_normal_name(self): name = 'test_normal' normal1 = Normal(0.0, 1.0, name=name) self.assertEqual(normal1.name, name) normal2 = Normal(0.0, 1.0) self.assertEqual(normal2.name, 'Normal') paddle.enable_static() sample = normal1.sample([2]) self.assertEqual(self.get_prefix(sample.name), name + '_sample') entropy = normal1.entropy() self.assertEqual(self.get_prefix(entropy.name), name + '_entropy') value_npdata = np.array([0.8], dtype="float32") value_tensor = layers.create_tensor(dtype="float32") layers.assign(value_npdata, value_tensor) lp = normal1.log_prob(value_tensor) self.assertEqual(self.get_prefix(lp.name), name + '_log_prob') p = normal1.probs(value_tensor) self.assertEqual(self.get_prefix(p.name), name + '_probs') kl = normal1.kl_divergence(normal2) self.assertEqual(self.get_prefix(kl.name), name + '_kl_divergence') def test_uniform_name(self): name = 'test_uniform' uniform1 = Uniform(0.0, 1.0, name=name) self.assertEqual(uniform1.name, name) uniform2 = Uniform(0.0, 1.0) self.assertEqual(uniform2.name, 'Uniform') paddle.enable_static() sample = uniform1.sample([2]) self.assertEqual(self.get_prefix(sample.name), name + '_sample') entropy = uniform1.entropy() self.assertEqual(self.get_prefix(entropy.name), name + '_entropy') value_npdata = np.array([0.8], dtype="float32") value_tensor = layers.create_tensor(dtype="float32") layers.assign(value_npdata, value_tensor) lp = uniform1.log_prob(value_tensor) self.assertEqual(self.get_prefix(lp.name), name + '_log_prob') p = uniform1.probs(value_tensor) self.assertEqual(self.get_prefix(p.name), name + '_probs') def test_categorical_name(self): name = 'test_categorical' categorical1 = Categorical([0.4, 0.6], name=name) self.assertEqual(categorical1.name, name) categorical2 = Categorical([0.5, 0.5]) self.assertEqual(categorical2.name, 'Categorical') paddle.enable_static() sample = categorical1.sample([2]) self.assertEqual(self.get_prefix(sample.name), name + '_sample') entropy = categorical1.entropy() self.assertEqual(self.get_prefix(entropy.name), name + '_entropy') kl = categorical1.kl_divergence(categorical2) self.assertEqual(self.get_prefix(kl.name), name + '_kl_divergence') value_npdata = np.array([0], dtype="int64") value_tensor = layers.create_tensor(dtype="int64") layers.assign(value_npdata, value_tensor) p = categorical1.probs(value_tensor) self.assertEqual(self.get_prefix(p.name), name + '_probs') lp = categorical1.log_prob(value_tensor) self.assertEqual(self.get_prefix(lp.name), name + '_log_prob') if __name__ == '__main__': unittest.main()