// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include "paddle/pten/common/backend.h" #include "paddle/pten/common/data_type.h" #include "paddle/pten/common/layout.h" #include "paddle/pten/core/convert_utils.h" #include "paddle/pten/core/kernel_def.h" // See Note [ Why still include the fluid headers? ] #include "paddle/fluid/platform/enforce.h" #include "paddle/utils/flat_hash_map.h" #include "paddle/utils/small_vector.h" namespace pten { using DataType = paddle::experimental::DataType; using DataLayout = paddle::experimental::DataLayout; /** * [ Naming considerations ] * * The tensor operation library contains many kernels, and the computation * in each specific scenario is represented by an kernel. * * We directly named it `Kernel` instead of `Kernel`, the tensor operation * library here and fluid are independent, avoiding developers from * misunderstanding the relationship between the two concepts. */ class KernelContext; using KernelFn = void (*)(KernelContext* ctx); class KernelName final { public: KernelName(std::string name, std::string overload_name) : name_(std::move(name)), overload_name_(std::move(overload_name)) {} KernelName(const std::string& kernel_name) { ParseNameAndOverloadNameFromString(kernel_name); } KernelName(const char* kernel_name) { std::string kernel_name_str(kernel_name); ParseNameAndOverloadNameFromString(kernel_name_str); } const std::string& name() const { return name_; } const std::string& overload_name() const { return overload_name_; } struct Hash { size_t operator()(const KernelName& kernel_name) const { return std::hash()(kernel_name.name()) ^ (std::hash()(kernel_name.overload_name()) << 1); } }; size_t hash_value() const { return Hash()(*this); } bool operator<(const KernelName& kernel_name) const { return hash_value() < kernel_name.hash_value(); } bool operator==(const KernelName& kernel_name) const { return hash_value() == kernel_name.hash_value(); } bool operator!=(const KernelName& kernel_name) const { return hash_value() != kernel_name.hash_value(); } private: void ParseNameAndOverloadNameFromString(const std::string& kernel_name) { size_t pos = kernel_name.find_first_of('.'); if (pos == std::string::npos) { name_ = kernel_name; overload_name_ = ""; } else { name_ = kernel_name.substr(0, pos); overload_name_ = kernel_name.substr(pos + 1, kernel_name.size()); } } // TODO(chenweihang): use string_view to improve performance later std::string name_; std::string overload_name_; }; class KernelKey { public: KernelKey() = default; KernelKey(Backend backend, DataLayout layout, DataType dtype) : backend_(backend), layout_(layout), dtype_(dtype) {} Backend backend() const { return backend_; } DataLayout layout() const { return layout_; } DataType dtype() const { return dtype_; } struct Hash { // Note: Now the number of bits we need does not exceed 32 bits, so there is // no need to use 64 bits. If needed in the future, it can be expanded, // but now we don’t over-design. uint32_t operator()(const KernelKey& key) const; }; uint32_t hash_value() const { return Hash()(*this); } bool operator<(const KernelKey& key) const { return hash_value() < key.hash_value(); } bool operator==(const KernelKey& key) const { return hash_value() == key.hash_value(); } bool operator!=(const KernelKey& key) const { return hash_value() != key.hash_value(); } private: // In total should be smaller than 32. constexpr static int kBackendBitLength = 8; constexpr static int kDataLayoutBitLength = 4; constexpr static int kDataTypeBitLength = 8; Backend backend_{Backend::UNDEFINED}; DataLayout layout_{DataLayout::UNDEFINED}; DataType dtype_{DataType::UNDEFINED}; }; // TODO(chenweihang): how deal with vector? struct TensorArgDef { Backend backend; DataLayout layout; DataType dtype; TensorArgDef(Backend in_backend, DataLayout in_layout, DataType in_dtype) : backend(in_backend), layout(in_layout), dtype(in_dtype) {} TensorArgDef& SetBackend(Backend in_backend) { backend = in_backend; return *this; } TensorArgDef& SetDataLayout(DataLayout in_layout) { layout = in_layout; return *this; } TensorArgDef& SetDataType(DataType in_dtype) { dtype = in_dtype; return *this; } }; struct AttributeArgDef { std::type_index type_index; explicit AttributeArgDef(std::type_index type_index) : type_index(type_index) {} }; class KernelArgsDef { public: KernelArgsDef() = default; void AppendInput(Backend backend, DataLayout layout, DataType dtype) { input_defs_.emplace_back(TensorArgDef(backend, layout, dtype)); } void AppendOutput(Backend backend, DataLayout layout, DataType dtype) { output_defs_.emplace_back(TensorArgDef(backend, layout, dtype)); } void AppendAttribute(std::type_index type_index) { attribute_defs_.emplace_back(AttributeArgDef(type_index)); } const paddle::SmallVector& input_defs() const { return input_defs_; } const paddle::SmallVector& output_defs() const { return output_defs_; } const paddle::SmallVector& attribute_defs() const { return attribute_defs_; } paddle::SmallVector& input_defs() { return input_defs_; } paddle::SmallVector& output_defs() { return output_defs_; } paddle::SmallVector& attribute_defs() { return attribute_defs_; } private: paddle::SmallVector input_defs_{{}}; paddle::SmallVector output_defs_{{}}; paddle::SmallVector attribute_defs_{{}}; }; class Kernel { public: // for map element contruct Kernel() = default; explicit Kernel(KernelFn fn) : fn_(fn) {} void operator()(KernelContext* ctx) const { fn_(ctx); } KernelArgsDef* mutable_args_def() { return &args_def_; } const KernelArgsDef& args_def() const { return args_def_; } TensorArgDef& InputAt(size_t idx) { return args_def_.input_defs().at(idx); } TensorArgDef& OutputAt(size_t idx) { return args_def_.output_defs().at(idx); } bool IsValid() { return fn_ != nullptr; } private: KernelFn fn_{nullptr}; KernelArgsDef args_def_; }; /** * Note: Each Computation need a basic kernel map that named by kernel_name. * Such as for scale op, KernelMap contains a `scale` kernel map, * if it still need other overload kernel, the op name can be * `scale.***`. */ class KernelFactory { public: // replaced by paddle::flat_hash_map later using KernelMap = paddle::flat_hash_map< KernelName, paddle::flat_hash_map, KernelName::Hash>; static KernelFactory& Instance(); KernelMap& kernels() { return kernels_; } bool HasCompatiblePtenKernel(const std::string& op_type) const { return kernels_.find(TransToPtenKernelName(op_type)) != kernels_.end(); } const Kernel& SelectKernelOrThrowError(const KernelName& kernel_name, const KernelKey& kernel_key) const; const Kernel& SelectKernelOrThrowError(const KernelName& kernel_name, Backend backend, DataLayout layout, DataType dtype) const; Kernel SelectKernel(const KernelName& kernel_name, const KernelKey& kernel_key) const; private: KernelFactory() = default; KernelMap kernels_; }; /** operator << overload **/ inline std::ostream& operator<<(std::ostream& os, const KernelName& kernel_name) { if (kernel_name.overload_name().empty()) { os << kernel_name.name(); } else { os << kernel_name.name() << "." << kernel_name.overload_name(); } return os; } inline std::ostream& operator<<(std::ostream& os, const KernelKey& kernel_key) { os << "(" << kernel_key.backend() << ", " << kernel_key.layout() << ", " << kernel_key.dtype() << ")"; return os; } std::ostream& operator<<(std::ostream& os, const Kernel& kernel); std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory); } // namespace pten