/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "cub/cub.cuh" #include "paddle/fluid/operators/math/depthwise_conv.h" #include "paddle/fluid/platform/cuda_device_function.h" #include "paddle/fluid/platform/cuda_primitives.h" namespace paddle { namespace operators { namespace math { template __device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) { typedef cub::WarpReduce WarpReduce; typename WarpReduce::TempStorage temp_storage; value = WarpReduce(temp_storage).Sum(value); if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value); } #define ARG_DEFINE_KernelDepthwiseConv \ const T *const input_data, const T *const filter_data, const int batch_size, \ const int output_channels, const int output_height, \ const int output_width, const int input_channels, \ const int input_height, const int input_width, \ const int filter_multiplier, const int filter_height, \ const int filter_width, const int stride_height, const int stride_width, \ const int padding_height, const int padding_width, \ const int dilate_height, const int dilate_width, T *const output_data, \ const DataLayout data_layout = DataLayout::kNCHW // A Cuda kernel to compute the depthwise convolution forward pass // in NCHW format. template __device__ __inline__ void KernelDepthwiseConv(ARG_DEFINE_KernelDepthwiseConv) { for (int w_out = threadIdx.x; w_out < output_width; w_out += blockDim.x) { for (int h_out = threadIdx.y; h_out < output_height; h_out += blockDim.y) { const int batch = blockIdx.y; const int c_out = blockIdx.x; const int c_in = c_out / filter_multiplier; const T* weight = filter_data + c_out * filter_height * filter_width; T value = 0; const int h_in_start = -padding_height + h_out * stride_height; const int w_in_start = -padding_width + w_out * stride_width; const int h_in_end = h_in_start + filter_height * dilate_height; const int w_in_end = w_in_start + filter_width * dilate_width; int in_offset; if (data_layout == DataLayout::kNCHW) { in_offset = ((batch * input_channels + c_in) * input_height) * input_width; } else { in_offset = batch * input_height * input_width * input_channels; } const int h_end = h_in_end < input_height ? h_in_end : input_height; const int w_end = w_in_end < input_width ? w_in_end : input_width; const int h_start = h_in_start > 0 ? h_in_start : 0; const int w_start = w_in_start > 0 ? w_in_start : 0; int weight_offset = 0; for (int h_in = h_in_start; h_in < h_in_end; h_in += dilate_height) { for (int w_in = w_in_start; w_in < w_in_end; w_in += dilate_width) { if (h_in >= h_start && h_in < h_end && w_in >= w_start && w_in < w_end) { int offset; if (data_layout == DataLayout::kNCHW) { offset = in_offset + h_in * input_width + w_in; } else { offset = in_offset + (h_in * input_width + w_in) * input_channels + c_in; } if (fuse_relu_before_conv) { value += weight[weight_offset] * max(0.0f, input_data[offset]); } else { value += weight[weight_offset] * input_data[offset]; } } weight_offset++; } } int index; if (data_layout == DataLayout::kNCHW) { index = ((batch * gridDim.x + c_out) * output_height + h_out) * output_width + w_out; } else { index = ((batch * output_height + h_out) * output_width + w_out) * gridDim.x + c_out; } output_data[index] = value; } } } template __device__ __inline__ void KernelDepthwiseConvCFilter( ARG_DEFINE_KernelDepthwiseConv) { const int kWeghtSize = c_filter * c_filter; T r_weight[kWeghtSize]; const int batch = blockIdx.y; const int c_out = blockIdx.x; const T* weight = filter_data + c_out * c_filter * c_filter; for (int i = 0; i < c_filter * c_filter; i++) r_weight[i] = weight[i]; for (int w_out = threadIdx.x; w_out < output_width; w_out += blockDim.x) { for (int h_out = threadIdx.y; h_out < output_height; h_out += blockDim.y) { const int batch = blockIdx.y; const int c_out = blockIdx.x; const int c_in = c_out / filter_multiplier; T value = 0; const int h_in_start = -padding_height + h_out * stride_height; const int w_in_start = -padding_width + w_out * stride_width; const int h_in_end = h_in_start + c_filter * dilate_height; const int w_in_end = w_in_start + c_filter * dilate_width; int in_offset; if (data_layout == DataLayout::kNCHW) { in_offset = ((batch * input_channels + c_in) * input_height) * input_width; } else { in_offset = batch * input_height * input_width * input_channels; } const int h_end = h_in_end < input_height ? h_in_end : input_height; const int w_end = w_in_end < input_width ? w_in_end : input_width; const int h_start = h_in_start > 0 ? h_in_start : 0; const int w_start = w_in_start > 0 ? w_in_start : 0; for (int h_in = h_in_start, h_f = 0; h_f < c_filter; h_in += dilate_height, h_f++) { for (int w_in = w_in_start, w_f = 0; w_f < c_filter; w_in += dilate_width, w_f++) { if (h_in >= 0 && h_in < input_height && w_in >= 0 && w_in < input_width) { int offset; if (data_layout == DataLayout::kNCHW) { offset = in_offset + h_in * input_width + w_in; } else { offset = in_offset + (h_in * input_width + w_in) * input_channels + c_in; } if (fuse_relu_before_conv) { value += r_weight[h_f * c_filter + w_f] * max(0.0f, input_data[offset]); } else { value += r_weight[h_f * c_filter + w_f] * input_data[offset]; } } } } int index; if (data_layout == DataLayout::kNCHW) { index = ((batch * gridDim.x + c_out) * output_height + h_out) * output_width + w_out; } else { index = ((batch * output_height + h_out) * output_width + w_out) * gridDim.x + c_out; } output_data[index] = value; } } } template __global__ void KernelDepthwiseConvSp(ARG_DEFINE_KernelDepthwiseConv) { if (c_filter_multiplier == 0) { if (c_filter == -1) KernelDepthwiseConv( input_data, filter_data, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, filter_multiplier, filter_height, filter_width, stride_height, stride_width, padding_height, padding_width, dilate_height, dilate_width, output_data, data_layout); else KernelDepthwiseConvCFilter( input_data, filter_data, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, filter_multiplier, filter_height, filter_width, stride_height, stride_width, padding_height, padding_width, dilate_height, dilate_width, output_data, data_layout); } else { if (c_filter == -1) KernelDepthwiseConv( input_data, filter_data, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, c_filter_multiplier, filter_height, filter_height, c_stride, c_stride, padding_height, padding_width, dilate_height, dilate_width, output_data, data_layout); else KernelDepthwiseConvCFilter( input_data, filter_data, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, c_filter_multiplier, filter_height, filter_height, c_stride, c_stride, padding_height, padding_width, dilate_height, dilate_width, output_data, data_layout); } } // CUDA kernel to compute the depthwise convolution backprop w.r.t input. #define ARG_DEFINE_KernelDepthwiseConvInputGrad \ const T *const input_data, const T *const output_grad_data, \ const T *const filter_data, const int batch_size, \ const int output_channels, const int output_height, \ const int output_width, const int input_channels, \ const int input_height, const int input_width, \ const int filter_multiplier, const int filter_height, \ const int filter_width, const int stride_height, const int stride_width, \ const int padding_height, const int padding_width, \ const int dilate_height, const int dilate_width, \ T *const input_grad_data, \ const DataLayout data_layout = DataLayout::kNCHW template __device__ __inline__ void KernelDepthwiseConvInputGrad( ARG_DEFINE_KernelDepthwiseConvInputGrad) { for (int w_in = threadIdx.x; w_in < input_width; w_in += blockDim.x) { for (int h_in = threadIdx.y; h_in < input_height; h_in += blockDim.y) { const int batch = blockIdx.y; const int c_in = blockIdx.x; const int c_out_start = c_in * filter_multiplier; int h_out_start = h_in - (filter_height - 1) * dilate_height + padding_height; int h_out_end = h_in + padding_height; int w_out_start = w_in - (filter_width - 1) * dilate_width + padding_width; int w_out_end = w_in + padding_width; T value = 0; int index; if (data_layout == DataLayout::kNCHW) { index = ((batch * gridDim.x + c_in) * input_height + h_in) * input_width + w_in; } else { index = ((batch * input_height + h_in) * input_width + w_in) * gridDim.x + c_in; } if (fuse_relu_before_conv) { if (input_data[index] <= 0) { input_grad_data[index] = 0; continue; } } for (int c_out = c_out_start; c_out < c_out_start + filter_multiplier; c_out++) { int filter_offset = (c_out + 1) * filter_height * filter_width; for (int h_out = h_out_start; h_out <= h_out_end; h_out += dilate_height) { for (int w_out = w_out_start; w_out <= w_out_end; w_out += dilate_width) { filter_offset--; int s_h_out = h_out / stride_height; int s_w_out = w_out / stride_width; if (h_out % stride_height == 0 && w_out % stride_width == 0 && s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 && s_w_out < output_width) { int output_grad_offset; if (data_layout == DataLayout::kNCHW) { output_grad_offset = ((batch * output_channels + c_out) * output_height + s_h_out) * output_width + s_w_out; } else { output_grad_offset = ((batch * output_height + s_h_out) * output_width + s_w_out) * output_channels + c_out; } value += output_grad_data[output_grad_offset] * filter_data[filter_offset]; } } } } input_grad_data[index] = value; } } } template __device__ __inline__ void KernelDepthwiseConvInputGradCFilter( ARG_DEFINE_KernelDepthwiseConvInputGrad) { const int kWeghtSize = c_filter * c_filter * c_filter_multiplier + 1; T r_weight[kWeghtSize]; const int batch = blockIdx.y; const int c_in = blockIdx.x; for (int c_i = 0; c_i < filter_multiplier; c_i++) { int c_out = c_in * filter_multiplier + c_i; const T* weight = filter_data + c_out * c_filter * c_filter; for (int i = 0; i < c_filter * c_filter; i++) r_weight[i + c_i * c_filter * c_filter] = weight[c_filter * c_filter - i - 1]; } for (int w_in = threadIdx.x; w_in < input_width; w_in += blockDim.x) { for (int h_in = threadIdx.y; h_in < input_height; h_in += blockDim.y) { const int batch = blockIdx.y; const int c_in = blockIdx.x; int h_out_start = h_in - (c_filter - 1) * dilate_height + padding_height; int w_out_start = w_in - (c_filter - 1) * dilate_width + padding_width; T value = 0; int index; if (data_layout == DataLayout::kNCHW) { index = ((batch * gridDim.x + c_in) * input_height + h_in) * input_width + w_in; } else { index = ((batch * input_height + h_in) * input_width + w_in) * gridDim.x + c_in; } if (fuse_relu_before_conv) { if (input_data[index] <= 0) { input_grad_data[index] = 0; continue; } } for (int c_i = 0; c_i < filter_multiplier; c_i++) { int c_out = c_in * filter_multiplier + c_i; for (int h_out = h_out_start, h_f = 0; h_f < c_filter; h_out += dilate_height, h_f++) { for (int w_out = w_out_start, w_f = 0; w_f < c_filter; w_out += dilate_width, w_f++) { int s_h_out = h_out / stride_height; int s_w_out = w_out / stride_width; if (h_out % stride_height == 0 && w_out % stride_width == 0 && s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 && s_w_out < output_width) { int output_grad_offset; if (data_layout == DataLayout::kNCHW) { output_grad_offset = ((batch * output_channels + c_out) * output_height + s_h_out) * output_width + s_w_out; } else { output_grad_offset = ((batch * output_height + s_h_out) * output_width + s_w_out) * output_channels + c_out; } value += output_grad_data[output_grad_offset] * r_weight[h_f * c_filter + w_f + c_i * c_filter * c_filter]; } } } } input_grad_data[index] = value; } } } template __global__ void KernelDepthwiseConvInputGradSp( ARG_DEFINE_KernelDepthwiseConvInputGrad) { if (c_filter_multiplier == 0) KernelDepthwiseConvInputGrad( input_data, output_grad_data, filter_data, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, filter_multiplier, filter_height, filter_width, stride_height, stride_width, padding_height, padding_width, dilate_height, dilate_width, input_grad_data, data_layout); else if (c_filter == -1) KernelDepthwiseConvInputGrad( input_data, output_grad_data, filter_data, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, c_filter_multiplier, filter_height, filter_width, c_stride, c_stride, padding_height, padding_width, dilate_height, dilate_width, input_grad_data, data_layout); else KernelDepthwiseConvInputGradCFilter( input_data, output_grad_data, filter_data, batch_size, output_channels, output_height, output_width, input_channels, input_height, input_width, c_filter_multiplier, filter_height, filter_width, c_stride, c_stride, padding_height, padding_width, dilate_height, dilate_width, input_grad_data, data_layout); } // Cuda kernel to compute the depthwise convolution backprop w.r.t. filter. template __device__ __inline__ void KernelDepthwiseConvFilterGrad( const T* output_grad_data, const T* input_data, const int num, const int output_channels, const int output_height, const int output_width, const int input_channels, const int input_height, const int input_width, const int filter_multiplier, const int filter_height, const int filter_width, const int stride_height, const int stride_width, const int padding_height, const int padding_width, const int dilate_height, const int dilate_width, T* filter_grad_data, const DataLayout data_layout = DataLayout::kNCHW) { T s = 0; int gbid = ((blockIdx.z * gridDim.y) + blockIdx.y) * gridDim.x + blockIdx.x; for (int image_w = threadIdx.x; image_w < output_width; image_w += blockDim.x) { for (int bid = 0; bid < num; bid++) { for (int image_h = threadIdx.y; image_h < output_height; image_h += blockDim.y) { int kernel_id = blockIdx.z; int kernel_h = blockIdx.y * dilate_height - padding_height; int kernel_w = blockIdx.x * dilate_width - padding_width; int image_hk = image_h * stride_height + kernel_h; int image_wk = image_w * stride_width + kernel_w; if (image_hk < 0 || image_hk >= input_height) continue; if (image_wk < 0 || image_wk >= input_width) continue; #define gaid(N, C, H, W) \ ((((N)*gridDim.z + (C)) * output_height + (H)) * output_width + (W)) #define gaid_nhwc(N, H, W, C) \ ((((N)*output_height + (H)) * output_width + (W)) * gridDim.z + (C)) int input_id; if (data_layout == DataLayout::kNCHW) { input_id = ((bid * (gridDim.z / filter_multiplier) + kernel_id / filter_multiplier) * input_height + image_hk) * input_width + image_wk; if (fuse_relu_before_conv) { s += output_grad_data[gaid(bid, kernel_id, image_h, image_w)] * max(0.0f, input_data[input_id]); } else { s += output_grad_data[gaid(bid, kernel_id, image_h, image_w)] * input_data[input_id]; } } else { input_id = ((bid * input_height + image_hk) * input_width + image_wk) * (gridDim.z / filter_multiplier) + kernel_id / filter_multiplier; if (fuse_relu_before_conv) { s += output_grad_data[gaid_nhwc(bid, image_h, image_w, kernel_id)] * max(0.0f, input_data[input_id]); } else { s += output_grad_data[gaid_nhwc(bid, image_h, image_w, kernel_id)] * input_data[input_id]; } } #undef gaid } } } CudaAtomicAddWithWarp(&filter_grad_data[gbid], s); } template __global__ void KernelDepthwiseConvFilterGradSp( const T* output_grad_data, const T* input_data, const int num, const int output_channels, const int output_height, const int output_width, const int input_channels, const int input_height, const int input_width, const int filter_multiplier, const int filter_height, const int filter_width, const int stride_height, const int stride_width, const int padding_height, const int padding_width, const int dilate_height, const int dilate_width, T* filter_grad_data, const DataLayout data_layout = DataLayout::kNCHW) { if (c_filter_multiplier == 0) KernelDepthwiseConvFilterGrad( output_grad_data, input_data, num, output_channels, output_height, output_width, input_channels, input_height, input_width, filter_multiplier, filter_height, filter_width, stride_height, stride_width, padding_height, padding_width, dilate_height, dilate_width, filter_grad_data, data_layout); else KernelDepthwiseConvFilterGrad( output_grad_data, input_data, num, output_channels, output_height, output_width, input_channels, input_height, input_width, c_filter_multiplier, filter_height, filter_width, stride_height, stride_width, padding_height, padding_width, dilate_height, dilate_width, filter_grad_data, data_layout); } /* * All tensors are in NCHW format. * Ksize, strides, paddings are two elements. These two elements represent * height and width, respectively. */ template class DepthwiseConvFunctor { public: void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& filter, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, framework::Tensor* output, const DataLayout data_layout = DataLayout::kNCHW) { const int batch_size = input.dims()[0]; const int input_channels = (data_layout == DataLayout::kNCHW ? input.dims()[1] : input.dims()[3]); const int input_height = (data_layout == DataLayout::kNCHW ? input.dims()[2] : input.dims()[1]); const int input_width = (data_layout == DataLayout::kNCHW ? input.dims()[3] : input.dims()[2]); const int output_channels = (data_layout == DataLayout::kNCHW ? output->dims()[1] : output->dims()[3]); const int output_height = (data_layout == DataLayout::kNCHW ? output->dims()[2] : output->dims()[1]); const int output_width = (data_layout == DataLayout::kNCHW ? output->dims()[3] : output->dims()[2]); const int ksize_height = filter.dims()[2]; const int ksize_width = filter.dims()[3]; const int stride_height = strides[0]; const int stride_width = strides[1]; const int padding_height = paddings[0]; const int padding_width = paddings[1]; const int dilate_height = dilations[0]; const int dilate_width = dilations[1]; const T* input_data = input.data(); const T* filter_data = filter.data(); T* output_data = output->mutable_data(context.GetPlace()); int thread = 512; if (output_width > 1024 && output_width <= 2048) thread = (output_width - 1) / 2 + 1; else if (output_width > 512 && output_width <= 1024) thread = output_width; int blocks = std::min(std::max(thread / output_width, 1), output_height); dim3 threads(std::min(output_width, thread), blocks, 1); dim3 grid(output_channels, batch_size, 1); int filter_multiplier = output_channels / input_channels; #define check_case(c_filter_multiplier, c_stride, c_filter) \ if (c_filter_multiplier == 0 || \ filter_multiplier == c_filter_multiplier && \ stride_height == stride_width && stride_height == c_stride && \ (ksize_height == ksize_width && ksize_height == c_filter || \ c_filter == -1)) { \ KernelDepthwiseConvSp< \ T, c_filter_multiplier, c_stride, c_filter, \ fuse_relu_before_conv><<>>( \ input_data, filter_data, batch_size, output_channels, output_height, \ output_width, input_channels, input_height, input_width, \ filter_multiplier, ksize_height, ksize_width, stride_height, \ stride_width, padding_height, padding_width, dilate_height, \ dilate_width, output_data, data_layout); \ return; \ } check_case(1, 1, 3); check_case(1, 1, 5); check_case(1, 1, -1); check_case(1, 2, 3); check_case(1, 2, 5); check_case(1, 2, -1); check_case(2, 1, 3); check_case(2, 1, 5); check_case(2, 1, -1); check_case(2, 2, 3); check_case(2, 2, 5); check_case(2, 2, -1); check_case(0, 0, -1); // NOTE(liangdun): 0,0 for other case // add other case if needed, e.g. check_case(2^n,1) #undef check_case } }; template class DepthwiseConvInputGradFunctor { public: void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& filter, const framework::Tensor& output_grad, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, framework::Tensor* input_grad, const DataLayout data_layout = DataLayout::kNCHW) { const int batch_size = input.dims()[0]; const int input_channels = (data_layout == DataLayout::kNCHW ? input.dims()[1] : input.dims()[3]); const int input_height = (data_layout == DataLayout::kNCHW ? input.dims()[2] : input.dims()[1]); const int input_width = (data_layout == DataLayout::kNCHW ? input.dims()[3] : input.dims()[2]); const int output_channels = (data_layout == DataLayout::kNCHW ? output_grad.dims()[1] : output_grad.dims()[3]); const int output_height = (data_layout == DataLayout::kNCHW ? output_grad.dims()[2] : output_grad.dims()[1]); const int output_width = (data_layout == DataLayout::kNCHW ? output_grad.dims()[3] : output_grad.dims()[2]); const int ksize_height = filter.dims()[2]; const int ksize_width = filter.dims()[3]; const int stride_height = strides[0]; const int stride_width = strides[1]; const int padding_height = paddings[0]; const int padding_width = paddings[1]; const int dilate_height = dilations[0]; const int dilate_width = dilations[1]; const T* input_data = input.data(); const T* filter_data = filter.data(); const T* output_grad_data = output_grad.data(); T* input_grad_data = input_grad->mutable_data(context.GetPlace()); int thread = 512; if (input_width > 1024 && input_width <= 2048) thread = (input_width - 1) / 2 + 1; else if (input_width > 512 && input_width <= 1024) thread = input_width; int blocks = std::min(std::max(thread / input_width, 1), input_height); dim3 threads(std::min(input_width, thread), blocks, 1); dim3 grid(input_channels, batch_size, 1); int filter_multiplier = output_channels / input_channels; #define check_case(c_filter_multiplier, c_stride, c_filter) \ if (c_filter_multiplier == 0 || \ filter_multiplier == c_filter_multiplier && \ stride_height == stride_width && stride_height == c_stride && \ (ksize_height == ksize_width && ksize_height == c_filter || \ c_filter == -1)) { \ KernelDepthwiseConvInputGradSp< \ T, c_filter_multiplier, c_stride, c_filter, \ fuse_relu_before_conv><<>>( \ input_data, output_grad_data, filter_data, batch_size, \ output_channels, output_height, output_width, input_channels, \ input_height, input_width, filter_multiplier, ksize_height, \ ksize_width, stride_height, stride_width, padding_height, \ padding_width, dilate_height, dilate_width, input_grad_data, \ data_layout); \ return; \ } check_case(1, 1, 3); check_case(1, 1, 5); check_case(1, 1, -1); check_case(1, 2, 3); check_case(1, 2, 5); check_case(1, 2, -1); check_case(2, 1, 3); check_case(2, 1, 5); check_case(2, 1, -1); check_case(2, 2, 3); check_case(2, 2, 5); check_case(2, 2, -1); check_case(0, 0, -1); // NOTE(liangdun): 0,0 for other case // add other case if needed, e.g. check_case(2^n,1) #undef check_case } }; template class DepthwiseConvFilterGradFunctor { public: void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& output_grad, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, framework::Tensor* filter_grad, const DataLayout data_layout = DataLayout::kNCHW) { const int batch_size = input.dims()[0]; const int input_channels = (data_layout == DataLayout::kNCHW ? input.dims()[1] : input.dims()[3]); const int input_height = (data_layout == DataLayout::kNCHW ? input.dims()[2] : input.dims()[1]); const int input_width = (data_layout == DataLayout::kNCHW ? input.dims()[3] : input.dims()[2]); const int output_channels = (data_layout == DataLayout::kNCHW ? output_grad.dims()[1] : output_grad.dims()[3]); const int output_height = (data_layout == DataLayout::kNCHW ? output_grad.dims()[2] : output_grad.dims()[1]); const int output_width = (data_layout == DataLayout::kNCHW ? output_grad.dims()[3] : output_grad.dims()[2]); const int ksize_height = filter_grad->dims()[2]; const int ksize_width = filter_grad->dims()[3]; const int stride_height = strides[0]; const int stride_width = strides[1]; const int padding_height = paddings[0]; const int padding_width = paddings[1]; const int dilate_height = dilations[0]; const int dilate_width = dilations[1]; const T* input_data = input.data(); const T* output_grad_data = output_grad.data(); T* filter_grad_data = filter_grad->mutable_data(context.GetPlace()); int block_size = 512; if (output_width > 1024 && output_width <= 2048) block_size = (output_width - 1) / 2 + 1; else if (output_width > 512 && output_width <= 1024) block_size = output_width; int crop_output_height = std::min(std::max(block_size / output_width, 1), output_height); dim3 grid(ksize_width, ksize_height, output_channels); dim3 threads(std::min(output_width, block_size), crop_output_height, 1); int filter_multiplier = output_channels / input_channels; #define check_case(c_filter_multiplier) \ if (c_filter_multiplier == 0 || c_filter_multiplier == filter_multiplier) { \ KernelDepthwiseConvFilterGradSp< \ T, c_filter_multiplier, \ fuse_relu_before_conv><<>>( \ output_grad_data, input_data, batch_size, output_channels, \ output_height, output_width, input_channels, input_height, \ input_width, filter_multiplier, ksize_height, ksize_width, \ stride_height, stride_width, padding_height, padding_width, \ dilate_height, dilate_width, filter_grad_data, data_layout); \ return; \ } check_case(1); check_case(0); #undef check_case } }; template class DepthwiseConvFunctor; template class DepthwiseConvFunctor; template class DepthwiseConvInputGradFunctor; template class DepthwiseConvInputGradFunctor; template class DepthwiseConvFilterGradFunctor; template class DepthwiseConvFilterGradFunctor; template class DepthwiseConvFunctor; template class DepthwiseConvFunctor; template class DepthwiseConvInputGradFunctor; template class DepthwiseConvInputGradFunctor; template class DepthwiseConvFilterGradFunctor; template class DepthwiseConvFilterGradFunctor; } // namespace math } // namespace operators } // namespace paddle