/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "Function.h" #include "paddle/math/Matrix.h" #include "paddle/math/SparseMatrix.h" #include "paddle/math/tests/TensorCheck.h" #include "paddle/testing/TestUtil.h" namespace paddle { typedef std::shared_ptr BufferArgPtr; /** * \brief A class for comparing CPU and GPU implementations of Function. * * * Use case: * // Initializes a test object, the corresponding cpu and gpu Function * // are constructed according to FunctionName and FuncConfig. * FunctionCompare test(FunctionName, FuncConfig); * // Prepare inputs and outputs arguments. * // Here the input and output can not contain real data, * // only contains the argument type and shape. * test.addInputs(input1); * test.addInputs(input2); * test.addOutputs(output1); * test.addOutputs(output2); * // Run. * // Will according to the type and shape of arguments(inputs_/outputs_), * // automatic initialization cpu and gpu function required arguments * // (cpuInputs_/cpuOutputs_/gpuInputs_/gpuOutputs_). * // Call the CPU and GPU Function calculation results. * // Compares CPU and GPU calculation results for consistency. * test.run(); */ class FunctionCompare { public: FunctionCompare(const std::string& name, const FuncConfig& config) : cpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-CPU")), gpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-GPU")) { cpuFunc_->init(config); gpuFunc_->init(config); } ~FunctionCompare() {} // input need only contains shape, do not contains data. void addInputs(const BufferArg& input) { size_t size = input.shape().getElements() * sizeOfValuType(input.valueType()); cpuMemory_.emplace_back(std::make_shared(size)); gpuMemory_.emplace_back(std::make_shared(size)); cpuInputs_.emplace_back(std::make_shared( cpuMemory_.back()->getBuf(), input.valueType(), input.shape())); gpuInputs_.emplace_back(std::make_shared( gpuMemory_.back()->getBuf(), input.valueType(), input.shape())); } // assume one copy of sequence is shared by different SequenceArgs void addSequence(const SequenceIdArg& input) { CHECK_EQ(input.shape().ndims(), 1UL); size_t batchSize = input.shape()[0]; size_t numSeqs = batchSize / 10 + 1; size_t sizeId = (numSeqs + 1) * sizeOfValuType(VALUE_TYPE_INT32); cpuMemory_.emplace_back(std::make_shared(sizeId)); gpuMemory_.emplace_back(std::make_shared(sizeId)); cpuSeq_ = std::make_shared(cpuMemory_.back()->getBuf(), TensorShape{numSeqs + 1}); gpuSeq_ = std::make_shared(gpuMemory_.back()->getBuf(), TensorShape{numSeqs + 1}); /// init sequence Id initArg(*cpuSeq_, batchSize); // todo(tianbing), delete it CHECK_EQ(cpuSeq_->shape().getElements(), cpuSeq_->numSeqs() + 1); CpuIVector cpuSeq(cpuSeq_->shape().getElements(), (int*)cpuSeq_->data()); GpuIVector gpuSeq(gpuSeq_->shape().getElements(), (int*)gpuSeq_->data()); gpuSeq.copyFrom(cpuSeq); } void addInputs(const SequenceArg& input) { CHECK_EQ(input.shape().ndims(), 2UL); size_t batchSize = input.shape()[0]; if (!cpuSeq_ || !gpuSeq_) { // sequence not exist addSequence(SequenceIdArg(TensorShape{batchSize})); } size_t size = input.shape().getElements() * sizeOfValuType(input.valueType()); cpuMemory_.emplace_back(std::make_shared(size)); gpuMemory_.emplace_back(std::make_shared(size)); /// SequenceArg cpuInputs_.emplace_back( std::make_shared(cpuMemory_.back()->getBuf(), input.valueType(), input.shape(), *cpuSeq_)); gpuInputs_.emplace_back( std::make_shared(gpuMemory_.back()->getBuf(), input.valueType(), input.shape(), *gpuSeq_)); } // output need only contains shape, do not contains data. void addOutputs(const BufferArg& output, ArgType argType = ASSIGN_TO) { size_t size = output.shape().getElements() * sizeOfValuType(output.valueType()); cpuMemory_.emplace_back(std::make_shared(size)); gpuMemory_.emplace_back(std::make_shared(size)); cpuOutputs_.emplace_back( std::make_shared(cpuMemory_.back()->getBuf(), output.valueType(), output.shape(), argType)); gpuOutputs_.emplace_back( std::make_shared(gpuMemory_.back()->getBuf(), output.valueType(), output.shape(), argType)); } /// add and init output sparse matrix void addOutputs(const SparseMatrixArg& output, ArgType argType = ASSIGN_TO) { cpuSparse_ = std::make_shared( output.shape()[0], output.shape()[1], output.nnz(), static_cast(output.dataType()), static_cast(output.dataFormat())); gpuSparse_ = std::make_shared( output.shape()[0], output.shape()[1], output.nnz(), static_cast(output.dataType()), static_cast(output.dataFormat())); /// init sparse matrix hl_stream_t stream(HPPL_STREAM_1); cpuSparse_->randomizeUniform(); gpuSparse_->copyFrom(*cpuSparse_, stream); hl_stream_synchronize(stream); void addInputs(const SequenceArg& input) { size_t batchSize = input.shape()[0]; size_t numSeqs = batchSize / 10 + 1; cpuOutputs_.emplace_back( std::make_shared(*cpuSparse_, argType)); gpuOutputs_.emplace_back( std::make_shared(*gpuSparse_, argType)); } void addOutputs(const SequenceArg& output, ArgType argType = ASSIGN_TO) { CHECK_EQ(output.shape().ndims(), 2UL); size_t batchSize = output.shape()[0]; if (!cpuSeq_ || !gpuSeq_) { // sequence not exist addSequence(SequenceIdArg(TensorShape{batchSize})); } size_t size = output.shape().getElements() * sizeOfValuType(output.valueType()); cpuMemory_.emplace_back(std::make_shared(size)); gpuMemory_.emplace_back(std::make_shared(size)); /// SequenceArg cpuOutputs_.emplace_back( std::make_shared(cpuMemory_.back()->getBuf(), output.valueType(), output.shape(), *cpuSeq_, argType)); gpuOutputs_.emplace_back( std::make_shared(gpuMemory_.back()->getBuf(), output.valueType(), output.shape(), *gpuSeq_, argType)); } void addInputs(const SparseMatrixArg& input) { cpuSparse_ = std::make_shared( input.shape()[0], input.shape()[1], input.nnz(), static_cast(input.dataType()), static_cast(input.dataFormat())); gpuSparse_ = std::make_shared( input.shape()[0], input.shape()[1], input.nnz(), static_cast(input.dataType()), static_cast(input.dataFormat())); /// init sparse matrix hl_stream_t stream(HPPL_STREAM_1); cpuSparse_->randomizeUniform(); gpuSparse_->copyFrom(*cpuSparse_, stream); hl_stream_synchronize(stream); cpuInputs_.emplace_back(std::make_shared(*cpuSparse_)); gpuInputs_.emplace_back(std::make_shared(*gpuSparse_)); } void run() { // prepare cpu/gpu arguments initInputs(); initOutputs(); // function calculate auto callFunction = [](FunctionBase* function, std::vector& inputs, std::vector& outputs) { BufferArgs inArgs; BufferArgs outArgs; for (auto arg : inputs) { inArgs.addArg(*arg); } for (auto arg : outputs) { outArgs.addArg(*arg); } function->calc(inArgs, outArgs); }; callFunction(cpuFunc_.get(), cpuInputs_, cpuOutputs_); callFunction(gpuFunc_.get(), gpuInputs_, gpuOutputs_); // check outputs compareOutputs(); } std::shared_ptr getCpuFunction() const { return cpuFunc_; } std::shared_ptr getGpuFunction() const { return gpuFunc_; } protected: // only init cpu argument, gpu argument copy from cpu argument. void initArg(BufferArg& arg) { CpuVector vector(arg.shape().getElements(), (real*)arg.data()); vector.uniform(0.001, 1); } void initArg(SequenceArg& arg) { /// init only matrix CpuVector vector(arg.shape().getElements(), (real*)arg.data()); vector.uniform(0.001, 1); } void initArg(SequenceIdArg& arg, size_t batchSize) { size_t numSeqs = arg.numSeqs(); int* buf = reinterpret_cast(arg.data()); int pos = 0; size_t maxLen = 2 * batchSize / numSeqs; for (int i = 0; i < (int)numSeqs; ++i) { int len = 1 + uniformRandom(std::min( maxLen, batchSize - pos - numSeqs + i)); buf[i] = pos; pos += len; VLOG(1) << " len=" << len; } buf[numSeqs] = batchSize; } void initInputs() { for (size_t i = 0; i < cpuInputs_.size(); i++) { if (cpuInputs_[i]->isSparseArg()) { continue; /// sparse matrix already init } if (cpuInputs_[i]->isSequenceArg()) { initArg(dynamic_cast(*cpuInputs_[i])); } else { initArg(*cpuInputs_[i]); } // TODO: Need a BufferCopy used to copy from one BufferArg to another. CpuVector cpuVector(cpuInputs_[i]->shape().getElements(), (real*)cpuInputs_[i]->data()); GpuVector gpuVector(gpuInputs_[i]->shape().getElements(), (real*)gpuInputs_[i]->data()); gpuVector.copyFrom(cpuVector); } } void initOutputs() { for (size_t i = 0; i < cpuOutputs_.size(); i++) { if (cpuOutputs_[i]->isSparseArg()) { continue; /// sparse matrix already init } if (cpuOutputs_[i]->isSequenceArg()) { initArg(dynamic_cast(*cpuOutputs_[i])); } else { initArg(*cpuOutputs_[i]); } // TODO: Need a BufferCopy used to copy from one BufferArg to another. CpuVector cpuVector(cpuOutputs_[i]->shape().getElements(), (real*)cpuOutputs_[i]->data()); GpuVector gpuVector(gpuOutputs_[i]->shape().getElements(), (real*)gpuOutputs_[i]->data()); gpuVector.copyFrom(cpuVector); } } void compareOutputs() { for (size_t i = 0; i < cpuOutputs_.size(); i++) { // TODO, Need a BufferCheck used to compare the two buffers. const auto cpu = cpuOutputs_[i]; const auto gpu = gpuOutputs_[i]; CHECK_EQ(cpu->numElements(), gpu->numElements()); CpuVector cpuVector(cpu->numElements(), (real*)cpu->data()); GpuVector gpuVector(gpu->numElements(), (real*)gpu->data()); autotest::TensorCheckErr(cpuVector, gpuVector); } } protected: <<<<<<< HEAD std::shared_ptr cpuFunc_; std::shared_ptr gpuFunc_; std::vector cpuMemory_; std::vector gpuMemory_; std::vector cpuInputs_; std::vector cpuOutputs_; std::vector gpuInputs_; std::vector gpuOutputs_; std::shared_ptr cpuSparse_; std::shared_ptr gpuSparse_; std::shared_ptr cpuSeq_; std::shared_ptr gpuSeq_; }; } // namespace paddle