# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core from paddle.fluid.op import Operator import paddle.fluid as fluid from paddle.fluid import Program, program_guard import paddle def output_hist(out): hist, _ = np.histogram(out, range=(-10, 10)) hist = hist.astype("float32") hist /= float(out.size) prob = 0.1 * np.ones((10)) return hist, prob class TestRandintOp(OpTest): def setUp(self): self.op_type = "randint" self.inputs = {} self.init_attrs() self.outputs = {"Out": np.zeros((10000, 784)).astype("float32")} def init_attrs(self): self.attrs = {"shape": [10000, 784], "low": -10, "high": 10, "seed": 10} self.output_hist = output_hist def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): hist, prob = self.output_hist(np.array(outs[0])) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.001), "hist: " + str(hist)) class TestRandintOpError(unittest.TestCase): def test_errors(self): main_prog = Program() start_prog = Program() with program_guard(main_prog, start_prog): def test_shape(): shape = np.array([2, 3]) paddle.randint(5, shape=shape, dtype='int32') self.assertRaises(TypeError, test_shape) def test_dtype(): paddle.randint(5, shape=[32, 32], dtype='float32') self.assertRaises(TypeError, test_dtype) def test_low_high(): paddle.randint(low=5, high=5, shape=[32, 32], dtype='int32') self.assertRaises(ValueError, test_low_high) class TestRandintOp_attr_tensorlist(OpTest): def setUp(self): self.op_type = "randint" self.new_shape = (10000, 784) shape_tensor = [] for index, ele in enumerate(self.new_shape): shape_tensor.append(("x" + str(index), np.ones( (1)).astype("int64") * ele)) self.inputs = {'ShapeTensorList': shape_tensor} self.init_attrs() self.outputs = {"Out": np.zeros((10000, 784)).astype("int32")} def init_attrs(self): self.attrs = {"low": -10, "high": 10, "seed": 10} self.output_hist = output_hist def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): hist, prob = self.output_hist(np.array(outs[0])) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.001), "hist: " + str(hist)) class TestRandint_attr_tensor(OpTest): def setUp(self): self.op_type = "randint" self.inputs = {"ShapeTensor": np.array([10000, 784]).astype("int64")} self.init_attrs() self.outputs = {"Out": np.zeros((10000, 784)).astype("int64")} def init_attrs(self): self.attrs = {"low": -10, "high": 10, "seed": 10} self.output_hist = output_hist def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): hist, prob = self.output_hist(np.array(outs[0])) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.001), "hist: " + str(hist)) # Test python API class TestRandintAPI(unittest.TestCase): def test_api(self): startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): # results are from [0, 5). output1 = paddle.randint(5) # shape is a list and dtype is 'int32' output2 = paddle.randint( low=-100, high=100, shape=[64, 64], dtype='int32') # shape is a tuple and dtype is 'int64' output3 = paddle.randint( low=-100, high=100, shape=(32, 32, 3), dtype='int64') # shape is a tensorlist and dtype is 'float32' dim_1 = fluid.layers.fill_constant([1], "int64", 32) dim_2 = fluid.layers.fill_constant([1], "int32", 50) output4 = paddle.randint( low=-100, high=100, shape=[dim_1, 5], dtype='int32') # shape is a tensor and dtype is 'float64' var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") output5 = paddle.randint( low=1, high=1000, shape=var_shape, dtype='int64') place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) outs = exe.run( train_program, feed={'var_shape': np.array([100, 100]).astype('int64')}, fetch_list=[output1, output2, output3, output4, output5]) class TestRandintDygraphMode(unittest.TestCase): def test_check_output(self): with fluid.dygraph.guard(): x = paddle.randint(10, shape=[10], dtype="int32") x_np = x.numpy() for i in range(10): self.assertTrue((x_np[i] >= 0 and x_np[i] < 10)) if __name__ == "__main__": unittest.main()