set -e function clock_to_seconds() { hours=`echo $1 | awk -F ':' '{print $1}'` mins=`echo $1 | awk -F ':' '{print $2}'` secs=`echo $1 | awk -F ':' '{print $3}'` echo `awk 'BEGIN{printf "%.2f",('$secs' + '$mins' * 60 + '$hours' * 3600)}'` } function infer() { unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY topology=$1 layer_num=$2 bs=$3 use_mkldnn=$4 if [ $4 == "True" ]; then thread=1 log="logs/infer-${topology}-${layer_num}-mkldnn-${bs}.log" elif [ $4 == "False" ]; then thread=`nproc` if [ $thread -gt $bs ]; then thread=$bs fi log="logs/infer-${topology}-${layer_num}-${thread}mklml-${bs}.log" else echo "Wrong input $4, use True or False." exit 0 fi models_in="models/${topology}-${layer_num}/pass-00000/" if [ ! -d $models_in ]; then echo "Training model ${topology}_${layer_num}" paddle train --job=train \ --config="${topology}.py" \ --use_mkldnn=True \ --use_gpu=False \ --trainer_count=1 \ --num_passes=1 \ --save_dir="models/${topology}-${layer_num}" \ --config_args="batch_size=128,layer_num=${layer_num}" \ > /dev/null 2>&1 echo "Done" fi log_period=$((256 / bs)) paddle train --job=test \ --config="${topology}.py" \ --use_mkldnn=$use_mkldnn \ --use_gpu=False \ --trainer_count=$thread \ --log_period=$log_period \ --config_args="batch_size=${bs},layer_num=${layer_num},is_infer=True" \ --init_model_path=$models_in \ 2>&1 | tee ${log} # calculate the last 5 logs period time of 1280 samples, # the time before are burning time. start=`tail ${log} -n 7 | head -n 1 | awk -F ' ' '{print $2}' | xargs` end=`tail ${log} -n 2 | head -n 1 | awk -F ' ' '{print $2}' | xargs` start_sec=`clock_to_seconds $start` end_sec=`clock_to_seconds $end` fps=`awk 'BEGIN{printf "%.2f",(1280 / ('$end_sec' - '$start_sec'))}'` echo "Last 1280 samples start: ${start}(${start_sec} sec), end: ${end}(${end_sec} sec;" >> ${log} echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} } if [ ! -f "train.list" ]; then echo " " > train.list fi if [ ! -f "test.list" ]; then echo " " > test.list fi if [ ! -d "logs" ]; then mkdir logs fi if [ ! -d "models" ]; then mkdir -p models fi # inference benchmark for use_mkldnn in True False; do for batchsize in 1 2 4 8 16; do infer alexnet group2 $batchsize $use_mkldnn infer googlenet v1 $batchsize $use_mkldnn infer resnet 50 $batchsize $use_mkldnn infer vgg 19 $batchsize $use_mkldnn done done