#include "adadelta_optimizer.h" #include namespace paddle { namespace optimizer { void AdadeltaOptimizer::set_weight(Tensor* p) { size_t size = p->size(); real* gptr = new real[size]; accum_gradient = Tensor(gptr, size); real* dptr = new real[size]; accum_delta = Tensor(dptr, size); real* dptr_current = new real[size]; update_delta = Tensor(dptr_current, size); } void AdadeltaOptimizer::update(const Tensor& gradient) { num_sample_passed += 1; double learning_rate = lr_policy->get_learning_rate(num_sample_passed); for (size_t i = 0; i < parameter_->size(); ++i) { accum_gradient[i] = rho * accum_gradient[i] + (1.0 - rho) * gradient[i] * gradient[i]; update_delta[i] = std::sqrt(accum_delta[i] + epsilon) / std::sqrt(accum_gradient[i] + epsilon) * gradient[i]; accum_delta[i] = rho * accum_delta[i] + (1.0 - rho) * update_delta[i] * update_delta[i]; parameter_[i] -= learning_rate * update_delta[i] + learning_rate * decay * parameter_[i]; } } } // namespace optimizer } // namespace paddle