# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest def Levenshtein(hyp, ref): """ Compute the Levenshtein distance between two strings. :param hyp: hypothesis string in index :type hyp: list :param ref: reference string in index :type ref: list """ m = len(hyp) n = len(ref) if m == 0: return n if n == 0: return m dist = np.zeros((m + 1, n + 1)).astype("float32") for i in range(0, m + 1): dist[i][0] = i for j in range(0, n + 1): dist[0][j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if hyp[i - 1] == ref[j - 1] else 1 deletion = dist[i - 1][j] + 1 insertion = dist[i][j - 1] + 1 substitution = dist[i - 1][j - 1] + cost dist[i][j] = min(deletion, insertion, substitution) return dist[m][n] class TestEditDistanceOp(OpTest): def setUp(self): self.op_type = "edit_distance" normalized = False x1 = np.array([[12, 3, 5, 8, 2]]).astype("int64") x2 = np.array([[12, 4, 7, 8]]).astype("int64") x1 = np.transpose(x1) x2 = np.transpose(x2) self.x1_lod = [1, 4] self.x2_lod = [3, 1] num_strs = len(self.x1_lod) distance = np.zeros((num_strs, 1)).astype("float32") sequence_num = np.array(2).astype("int64") x1_offset = 0 x2_offset = 0 for i in range(0, num_strs): distance[i] = Levenshtein( hyp=x1[x1_offset:(x1_offset + self.x1_lod[i])], ref=x2[x2_offset:(x2_offset + self.x2_lod[i])]) x1_offset += self.x1_lod[i] x2_offset += self.x2_lod[i] if normalized is True: len_ref = self.x2_lod[i] distance[i] = distance[i] / len_ref self.attrs = {'normalized': normalized} self.inputs = {'Hyps': (x1, [self.x1_lod]), 'Refs': (x2, [self.x2_lod])} self.outputs = {'Out': distance, 'SequenceNum': sequence_num} def test_check_output(self): self.check_output() class TestEditDistanceOpNormalizedCase0(OpTest): def reset_config(self): pass def setUp(self): self.op_type = "edit_distance" normalized = True x1 = np.array([[10, 3, 6, 5, 8, 2]]).astype("int64") x2 = np.array([[10, 4, 6, 7, 8]]).astype("int64") x1 = np.transpose(x1) x2 = np.transpose(x2) self.x1_lod = [3, 0, 3] self.x2_lod = [2, 1, 2] self.reset_config() num_strs = len(self.x1_lod) distance = np.zeros((num_strs, 1)).astype("float32") sequence_num = np.array(3).astype("int64") x1_offset = 0 x2_offset = 0 for i in range(0, num_strs): distance[i] = Levenshtein( hyp=x1[x1_offset:(x1_offset + self.x1_lod[i])], ref=x2[x2_offset:(x2_offset + self.x2_lod[i])]) x1_offset += self.x1_lod[i] x2_offset += self.x2_lod[i] if normalized is True: len_ref = self.x2_lod[i] distance[i] = distance[i] / len_ref self.attrs = {'normalized': normalized} self.inputs = {'Hyps': (x1, [self.x1_lod]), 'Refs': (x2, [self.x2_lod])} self.outputs = {'Out': distance, 'SequenceNum': sequence_num} def test_check_output(self): self.check_output() class TestEditDistanceOpNormalizedCase1(TestEditDistanceOpNormalizedCase0): def reset_config(self): self.x1_lod = [0, 6, 0] self.x2_lod = [2, 1, 2] class TestEditDistanceOpNormalizedCase2(TestEditDistanceOpNormalizedCase0): def reset_config(self): self.x1_lod = [0, 0, 6] self.x2_lod = [2, 2, 1] if __name__ == '__main__': unittest.main()