#!/usr/bin/env python from paddle.trainer_config_helpers import * height = 224 width = 224 num_class = 1000 batch_size = get_config_arg('batch_size', int, 64) layer_num = get_config_arg('layer_num', int, 19) args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} define_py_data_sources2( "train.list", "test.list", module="provider", obj="process", args=args) settings( batch_size=batch_size, learning_rate=0.001 / batch_size, learning_method=MomentumOptimizer(0.9), regularization=L2Regularization(0.0005 * batch_size)) img = data_layer(name='image', size=height * width * 3) def vgg_network(vgg_num=3): tmp = img_conv_group( input=img, num_channels=3, conv_padding=1, conv_num_filter=[64, 64], conv_filter_size=3, conv_act=ReluActivation(), pool_size=2, pool_stride=2, pool_type=MaxPooling()) tmp = img_conv_group( input=tmp, conv_num_filter=[128, 128], conv_padding=1, conv_filter_size=3, conv_act=ReluActivation(), pool_stride=2, pool_type=MaxPooling(), pool_size=2) channels = [] for i in range(vgg_num): channels.append(256) tmp = img_conv_group( input=tmp, conv_num_filter=channels, conv_padding=1, conv_filter_size=3, conv_act=ReluActivation(), pool_stride=2, pool_type=MaxPooling(), pool_size=2) channels = [] for i in range(vgg_num): channels.append(512) tmp = img_conv_group( input=tmp, conv_num_filter=channels, conv_padding=1, conv_filter_size=3, conv_act=ReluActivation(), pool_stride=2, pool_type=MaxPooling(), pool_size=2) tmp = img_conv_group( input=tmp, conv_num_filter=channels, conv_padding=1, conv_filter_size=3, conv_act=ReluActivation(), pool_stride=2, pool_type=MaxPooling(), pool_size=2) tmp = fc_layer( input=tmp, size=4096, act=ReluActivation(), layer_attr=ExtraAttr(drop_rate=0.5)) tmp = fc_layer( input=tmp, size=4096, act=ReluActivation(), layer_attr=ExtraAttr(drop_rate=0.5)) return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation()) if layer_num == 16: vgg = vgg_network(3) elif layer_num == 19: vgg = vgg_network(4) else: print("Wrong layer number.") lab = data_layer('label', num_class) loss = cross_entropy(input=vgg, label=lab) outputs(loss)