# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.dygraph.rnn import GRUCell import numpy as np np.random.seed = 123 def sigmoid(x): return 1. / (1. + np.exp(-x)) def tanh(x): return 2. * sigmoid(2. * x) - 1. def cudnn_step(step_input_np, pre_hidden_np, weight_ih, bias_ih, weight_hh, bias_hh): igates = np.matmul(step_input_np, weight_ih) igates += bias_ih hgates = np.matmul(pre_hidden_np, weight_hh) hgates += bias_hh chunked_igates = np.split(igates, indices_or_sections=3, axis=1) chunked_hgates = np.split(hgates, indices_or_sections=3, axis=1) reset_gate = chunked_igates[0] + chunked_hgates[0] reset_gate = sigmoid(reset_gate) input_gate = chunked_igates[1] + chunked_hgates[1] input_gate = sigmoid(input_gate) _temp = reset_gate * chunked_hgates[2] new_gate = chunked_igates[2] + _temp new_gate = tanh(new_gate) new_hidden = (pre_hidden_np - new_gate) * input_gate + new_gate return new_hidden def non_cudnn_step(step_in, pre_hidden, gate_w, gate_b, candidate_w, candidate_b): concat_1 = np.concatenate([step_in, pre_hidden], 1) gate_input = np.matmul(concat_1, gate_w) gate_input += gate_b gate_input = sigmoid(gate_input) r, u = np.split(gate_input, indices_or_sections=2, axis=1) r_hidden = r * pre_hidden candidate = np.matmul(np.concatenate([step_in, r_hidden], 1), candidate_w) candidate += candidate_b c = tanh(candidate) new_hidden = u * pre_hidden + (1 - u) * c return new_hidden class TestCudnnGRU(unittest.TestCase): def setUp(self): self.input_size = 100 self.hidden_size = 200 self.batch_size = 64 def test_run(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() with fluid.dygraph.guard(place): param_attr = fluid.ParamAttr(name="param_attr") bias_attr = fluid.ParamAttr(name="bias_attr") named_cudnn_gru = GRUCell(self.hidden_size, self.input_size, param_attr, bias_attr) cudnn_gru = GRUCell(self.hidden_size, self.input_size) param_list = cudnn_gru.state_dict() named_param_list = named_cudnn_gru.state_dict() # process weight and bias weight_ih_name = "_weight_ih" bias_ih_name = "_bias_ih" weight_hh_name = "_weight_hh" bias_hh_name = "_bias_hh" weight_ih = param_list[weight_ih_name].numpy() weight_ih = np.random.uniform( -0.1, 0.1, size=weight_ih.shape).astype('float64') param_list[weight_ih_name].set_value(weight_ih) named_param_list[weight_ih_name].set_value(weight_ih) bias_ih = param_list[bias_ih_name].numpy() bias_ih = np.random.uniform( -0.1, 0.1, size=bias_ih.shape).astype('float64') param_list[bias_ih_name].set_value(bias_ih) named_param_list[bias_ih_name].set_value(bias_ih) weight_hh = param_list[weight_hh_name].numpy() weight_hh = np.random.uniform( -0.1, 0.1, size=weight_hh.shape).astype('float64') param_list[weight_hh_name].set_value(weight_hh) named_param_list[weight_hh_name].set_value(weight_hh) bias_hh = param_list[bias_hh_name].numpy() bias_hh = np.random.uniform( -0.1, 0.1, size=bias_hh.shape).astype('float64') param_list[bias_hh_name].set_value(bias_hh) named_param_list[bias_hh_name].set_value(bias_hh) step_input_np = np.random.uniform(-0.1, 0.1, ( self.batch_size, self.input_size)).astype('float64') pre_hidden_np = np.random.uniform(-0.1, 0.1, ( self.batch_size, self.hidden_size)).astype('float64') step_input_var = fluid.dygraph.to_variable(step_input_np) pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np) api_out = cudnn_gru(step_input_var, pre_hidden_var) named_api_out = named_cudnn_gru(step_input_var, pre_hidden_var) np_out = cudnn_step(step_input_np, pre_hidden_np, weight_ih, bias_ih, weight_hh, bias_hh) self.assertTrue(np.allclose(api_out.numpy(), np_out, rtol=1e-5, atol=0)) self.assertTrue( np.allclose( named_api_out.numpy(), np_out, rtol=1e-5, atol=0)) class TestNonCudnnGRU(unittest.TestCase): def setUp(self): self.input_size = 100 self.hidden_size = 200 self.batch_size = 64 def test_run(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() with fluid.dygraph.guard(place): param_attr = fluid.ParamAttr(name="param_attr") bias_attr = fluid.ParamAttr(name="bias_attr") named_non_cudnn_gru = GRUCell( self.hidden_size, self.input_size, param_attr, bias_attr, use_cudnn_impl=False) non_cudnn_gru = GRUCell( self.hidden_size, self.input_size, use_cudnn_impl=False) param_list = non_cudnn_gru.state_dict() named_param_list = named_non_cudnn_gru.state_dict() # process weight and bias gate_w_name = "_gate_weight" gate_b_name = "_gate_bias" candidate_w_name = "_candidate_weight" candidate_b_name = "_candidate_bias" gate_w = param_list[gate_w_name].numpy() gate_w = np.random.uniform( -0.1, 0.1, size=gate_w.shape).astype('float64') param_list[gate_w_name].set_value(gate_w) named_param_list[gate_w_name].set_value(gate_w) gate_b = param_list[gate_b_name].numpy() gate_b = np.random.uniform( -0.1, 0.1, size=gate_b.shape).astype('float64') param_list[gate_b_name].set_value(gate_b) named_param_list[gate_b_name].set_value(gate_b) candidate_w = param_list[candidate_w_name].numpy() candidate_w = np.random.uniform( -0.1, 0.1, size=candidate_w.shape).astype('float64') param_list[candidate_w_name].set_value(candidate_w) named_param_list[candidate_w_name].set_value(candidate_w) candidate_b = param_list[candidate_b_name].numpy() candidate_b = np.random.uniform( -0.1, 0.1, size=candidate_b.shape).astype('float64') param_list[candidate_b_name].set_value(candidate_b) named_param_list[candidate_b_name].set_value(candidate_b) step_input_np = np.random.uniform(-0.1, 0.1, ( self.batch_size, self.input_size)).astype('float64') pre_hidden_np = np.random.uniform(-0.1, 0.1, ( self.batch_size, self.hidden_size)).astype('float64') step_input_var = fluid.dygraph.to_variable(step_input_np) pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np) api_out = non_cudnn_gru(step_input_var, pre_hidden_var) named_api_out = named_non_cudnn_gru(step_input_var, pre_hidden_var) np_out = non_cudnn_step(step_input_np, pre_hidden_np, gate_w, gate_b, candidate_w, candidate_b) self.assertTrue(np.allclose(api_out.numpy(), np_out, rtol=1e-5, atol=0)) self.assertTrue( np.allclose( named_api_out.numpy(), np_out, rtol=1e-5, atol=0)) if __name__ == '__main__': unittest.main()