/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/pten/kernels/copy_kernel.h" #include "paddle/pten/backends/cpu/cpu_context.h" #include "paddle/pten/common/data_type.h" #include "paddle/pten/core/compat/convert_utils.h" #include "paddle/pten/core/kernel_registry.h" // See Note [ Why still include the fluid headers? ] #include "paddle/fluid/memory/memcpy.h" namespace pten { // NOTE(chenweihang): blocking is useless in cpu kernel template void Copy(const Context& dev_ctx, const DenseTensor& src, bool blocking, DenseTensor* dst) { auto* src_ptr = src.data(); const auto& src_place = src.place(); VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to " << src_place; dst->Resize(src.dims()); auto* dst_ptr = dev_ctx.Alloc(dst, src.dtype()); if (src_ptr == dst_ptr) { VLOG(3) << "Skip copy the same data async from " << src_place << " to " << src_place; return; } VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr; CHECK(dst->layout() == src.layout()); auto size = src.numel() * paddle::experimental::SizeOf(src.dtype()); if (paddle::platform::is_cpu_place(src_place)) { paddle::memory::Copy(src_place, dst_ptr, src_place, src_ptr, size); } } } // namespace pten PT_REGISTER_GENERAL_KERNEL( copy, CPU, ALL_LAYOUT, pten::Copy, ALL_DTYPE) {}