// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/histogram_kernel.h" #include "paddle/fluid/platform/device/gpu/gpu_launch_config.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { using IndexType = int64_t; using paddle::platform::PADDLE_CUDA_NUM_THREADS; inline int GET_BLOCKS(const int N) { return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS; } template __device__ static IndexType GetBin(T input_value, T min_value, T max_value, int64_t nbins) { IndexType bin = static_cast((input_value - min_value) * nbins / (max_value - min_value)); IndexType output_index = bin < nbins - 1 ? bin : nbins - 1; return output_index; } template __global__ void KernelHistogram(const T* input, const int total_elements, const int64_t nbins, const T min_value, const T max_value, int64_t* output) { extern __shared__ int64_t buf_hist[]; for (int i = threadIdx.x; i < nbins; i += blockDim.x) { buf_hist[i] = 0; } __syncthreads(); CUDA_KERNEL_LOOP(input_index, total_elements) { // const IndexType input_index = threadIdx.x + blockIdx.x * blockDim.x; const auto input_value = input[input_index]; if (input_value >= min_value && input_value <= max_value) { const IndexType output_index = GetBin(input_value, min_value, max_value, nbins); paddle::platform::CudaAtomicAdd(&buf_hist[output_index], 1); } } __syncthreads(); for (int i = threadIdx.x; i < nbins; i += blockDim.x) { paddle::platform::CudaAtomicAdd(&output[i], buf_hist[i]); } } template void HistogramKernel(const Context& dev_ctx, const DenseTensor& input, int64_t bins, int min, int max, DenseTensor* output) { auto& nbins = bins; auto& minval = min; auto& maxval = max; const T* input_data = input.data(); const int input_numel = input.numel(); int64_t* out_data = output->mutable_data(dev_ctx.GetPlace()); phi::funcs::SetConstant()( dev_ctx, output, static_cast(0)); if (input_data == nullptr) return; T output_min = static_cast(minval); T output_max = static_cast(maxval); if (output_min == output_max) { auto input_x = phi::EigenVector::Flatten(input); DenseTensor input_min_t, input_max_t; auto* input_min_data = input_min_t.mutable_data({1}, dev_ctx.GetPlace()); auto* input_max_data = input_max_t.mutable_data({1}, dev_ctx.GetPlace()); auto input_min_scala = phi::EigenScalar::From(input_min_t); auto input_max_scala = phi::EigenScalar::From(input_max_t); auto* place = dev_ctx.eigen_device(); input_min_scala.device(*place) = input_x.minimum(); input_max_scala.device(*place) = input_x.maximum(); DenseTensor input_min_cpu, input_max_cpu; paddle::framework::TensorCopySync( input_min_t, phi::CPUPlace(), &input_min_cpu); paddle::framework::TensorCopySync( input_max_t, phi::CPUPlace(), &input_max_cpu); output_min = input_min_cpu.data()[0]; output_max = input_max_cpu.data()[0]; } if (output_min == output_max) { output_min = output_min - 1; output_max = output_max + 1; } PADDLE_ENFORCE_EQ((std::isinf(static_cast(output_min)) || std::isnan(static_cast(output_max)) || std::isinf(static_cast(output_min)) || std::isnan(static_cast(output_max))), false, phi::errors::OutOfRange("range of min, max is not finite")); PADDLE_ENFORCE_GE( output_max, output_min, phi::errors::InvalidArgument( "max must be larger or equal to min. If min and max are both zero, " "the minimum and maximum values of the data are used. " "But received max is %d, min is %d", maxval, minval)); auto stream = dev_ctx.stream(); KernelHistogram<<>>( input_data, input_numel, nbins, output_min, output_max, out_data); } } // namespace phi PD_REGISTER_KERNEL(histogram, GPU, ALL_LAYOUT, phi::HistogramKernel, float, double, int, int64_t) {}