// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/bce_loss_grad_kernel.h" #include #include #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/hostdevice.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/elementwise_base.h" namespace phi { template struct BCELossGradFunctor { T one; T eps; HOSTDEVICE inline BCELossGradFunctor() { one = static_cast(1.0f); eps = static_cast(1e-12); } HOSTDEVICE inline T operator()(const T x, const T label, const T dout) const { T term1 = max((one - x) * x, eps); return (dout * (x - label) / term1); } }; template void BCELossGradKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& label, const DenseTensor& out_grad, DenseTensor* input_grad) { dev_ctx.template Alloc(input_grad); std::vector ins = {&input, &label, &out_grad}; std::vector outs = {input_grad}; auto functor = BCELossGradFunctor(); phi::funcs::ElementwiseKernel(dev_ctx, ins, &outs, functor); } } // namespace phi PD_REGISTER_KERNEL( bce_loss_grad, GPU, ALL_LAYOUT, phi::BCELossGradKernel, float, double) {}