/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/platform/cuda_graph_with_memory_pool.h" #include "paddle/phi/kernels/funcs/concat_and_split_functor.h" namespace phi { namespace funcs { template __global__ void ConcatKernel_(const T** inputs, const int64_t* input_cols, int col_size, const int64_t output_rows, const int64_t output_cols, T* output) { int64_t curr_segment = 0; int64_t curr_offset = input_cols[0]; CUDA_KERNEL_LOOP_TYPE(tid_x, output_cols, int64_t) { int64_t curr_col_offset = input_cols[curr_segment + 1]; while (curr_col_offset <= tid_x) { curr_offset = curr_col_offset; ++curr_segment; curr_col_offset = input_cols[curr_segment + 1]; } int64_t local_col = tid_x - curr_offset; int64_t segment_width = curr_col_offset - curr_offset; const T* input_ptr = inputs[curr_segment]; int64_t tid_y = blockIdx.y * blockDim.y + threadIdx.y; for (; tid_y < output_rows; tid_y += blockDim.y * gridDim.y) output[tid_y * output_cols + tid_x] = input_ptr[tid_y * segment_width + local_col]; } } template __device__ void ConcatKernelDetail(const T** inputs_data, const int64_t fixed_in_col, const int64_t out_rows, const int64_t out_cols, T* output_data) { CUDA_KERNEL_LOOP_TYPE(tid_x, out_cols, int64_t) { int64_t split = tid_x * 1.0 / fixed_in_col; int64_t in_offset = tid_x - split * fixed_in_col; const T* input_ptr = inputs_data[split]; int64_t tid_y = blockIdx.y * blockDim.y + threadIdx.y; for (; tid_y < out_rows; tid_y += blockDim.y * gridDim.y) { output_data[tid_y * out_cols + tid_x] = input_ptr[tid_y * fixed_in_col + in_offset]; } } } template __global__ void ConcatKernel_(const T* input_addr0, const T* input_addr1, const int64_t fixed_in_col, const int64_t out_rows, const int64_t out_cols, T* output_data) { const T* inputs_data[2]; inputs_data[0] = input_addr0; inputs_data[1] = input_addr1; ConcatKernelDetail( inputs_data, fixed_in_col, out_rows, out_cols, output_data); } template __global__ void ConcatKernel_(const T* input_addr0, const T* input_addr1, const T* input_addr2, const int64_t fixed_in_col, const int64_t out_rows, const int64_t out_cols, T* output_data) { const T* inputs_data[3]; inputs_data[0] = input_addr0; inputs_data[1] = input_addr1; inputs_data[2] = input_addr2; ConcatKernelDetail( inputs_data, fixed_in_col, out_rows, out_cols, output_data); } template __global__ void ConcatKernel_(const T* input_addr0, const T* input_addr1, const T* input_addr2, const T* input_addr3, const int64_t fixed_in_col, const int64_t out_rows, const int64_t out_cols, T* output_data) { const T* inputs_data[4]; inputs_data[0] = input_addr0; inputs_data[1] = input_addr1; inputs_data[2] = input_addr2; inputs_data[3] = input_addr3; ConcatKernelDetail( inputs_data, fixed_in_col, out_rows, out_cols, output_data); } template __global__ void ConcatKernel_(const T** inputs_data, const int in_num, const int64_t fixed_in_col, const int64_t out_rows, const int64_t out_cols, T* output_data) { ConcatKernelDetail( inputs_data, fixed_in_col, out_rows, out_cols, output_data); } template __global__ void SplitKernel_(const T* input_data, const int64_t in_row, const int64_t in_col, const int64_t* out_cols, int out_cols_size, T** outputs_data) { int64_t curr_segment = 0; int64_t curr_offset = out_cols[0]; CUDA_KERNEL_LOOP_TYPE(tid_x, in_col, int64_t) { int64_t curr_col_offset = out_cols[curr_segment + 1]; while (curr_col_offset <= tid_x) { curr_offset = curr_col_offset; ++curr_segment; curr_col_offset = out_cols[curr_segment + 1]; } int64_t local_col = tid_x - curr_offset; int64_t segment_width = curr_col_offset - curr_offset; T* output_ptr = outputs_data[curr_segment]; if (output_ptr != nullptr) { int64_t tid_y = blockIdx.y * blockDim.y + threadIdx.y; for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y) output_ptr[tid_y * segment_width + local_col] = input_data[tid_y * in_col + tid_x]; } } } template __device__ void SplitKernelDetail(const T* input_data, const int64_t in_row, const int64_t in_col, const int64_t fixed_out_col, T** outputs_data) { CUDA_KERNEL_LOOP_TYPE(tid_x, in_col, int64_t) { int64_t split = tid_x / fixed_out_col; int64_t in_offset = tid_x - split * fixed_out_col; T* output_ptr = outputs_data[split]; if (output_ptr != nullptr) { int64_t tid_y = blockIdx.y * blockDim.y + threadIdx.y; for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y) output_ptr[tid_y * fixed_out_col + in_offset] = input_data[tid_y * in_col + tid_x]; } } } template __global__ void SplitKernel_(const T* input_data, const int64_t in_row, const int64_t in_col, const int64_t fixed_out_col, T** outputs_data) { SplitKernelDetail(input_data, in_row, in_col, fixed_out_col, outputs_data); } template __global__ void SplitKernel_(const T* input_data, const int64_t in_row, const int64_t in_col, const int64_t fixed_out_col, T* outputs_addr0, T* outputs_addr1) { T* outputs_data[2]; outputs_data[0] = outputs_addr0; outputs_data[1] = outputs_addr1; SplitKernelDetail(input_data, in_row, in_col, fixed_out_col, outputs_data); } template __global__ void SplitKernel_(const T* input_data, const int64_t in_row, const int64_t in_col, const int64_t fixed_out_col, T* outputs_addr0, T* outputs_addr1, T* outputs_addr2) { T* outputs_data[3]; outputs_data[0] = outputs_addr0; outputs_data[1] = outputs_addr1; outputs_data[2] = outputs_addr2; SplitKernelDetail(input_data, in_row, in_col, fixed_out_col, outputs_data); } template __global__ void SplitKernel_(const T* input_data, const int64_t in_row, const int64_t in_col, const int64_t fixed_out_col, T* outputs_addr0, T* outputs_addr1, T* outputs_addr2, T* outputs_addr3) { T* outputs_data[4]; outputs_data[0] = outputs_addr0; outputs_data[1] = outputs_addr1; outputs_data[2] = outputs_addr2; outputs_data[3] = outputs_addr3; SplitKernelDetail(input_data, in_row, in_col, fixed_out_col, outputs_data); } static inline void GetBlockDims(const phi::GPUContext& context, int64_t num_rows, int64_t num_cols, dim3* block_dims, dim3* grid_dims) { // Set the thread block and grid according to CurrentDeviceId const int kThreadsPerBlock = 1024; int block_cols = kThreadsPerBlock; if (num_cols < kThreadsPerBlock) { // block_cols is aligned by 32. block_cols = ((num_cols + 31) >> 5) << 5; } int block_rows = kThreadsPerBlock / block_cols; *block_dims = dim3(block_cols, block_rows, 1); int max_threads = context.GetMaxPhysicalThreadCount(); int64_t max_blocks = std::max(max_threads / kThreadsPerBlock, 1); int grid_cols = std::min((num_cols + block_cols - 1) / block_cols, max_blocks); int grid_rows = std::min(max_blocks / grid_cols, std::max(num_rows / block_rows, (int64_t)1)); *grid_dims = dim3(grid_cols, grid_rows, 1); } /* * All tensors' dimension should be the same and the values of * each dimension must be the same, except the axis dimension. */ template struct ConcatFunctor { void operator()(const phi::GPUContext& context, const std::vector& input, int axis, phi::DenseTensor* output) { // TODO(zcd): Add input data validity checking int64_t in_num = input.size(); int64_t in_row = 1; auto dim_0 = input[0].dims(); for (int i = 0; i < axis; ++i) { in_row *= dim_0[i]; } int64_t in_col = input[0].numel() / in_row; int64_t out_row = in_row, out_col = 0; int64_t inputs_col_num = in_num + 1; std::vector inputs_data_vec(in_num); std::vector inputs_col_vec(inputs_col_num); const T** inputs_data = inputs_data_vec.data(); int64_t* inputs_col = inputs_col_vec.data(); // There are some differences between hip runtime and NV runtime. // In NV, when the pageable memory data less than 64K is transferred from // hosttodevice, it will be automatically asynchronous. // However, only pinned memory in hip can copy asynchronously // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#concurrent-execution-host-device // 3.2.6.1. Concurrent Execution between Host and Device // Memory copies from host to device of a memory block of 64 KB or less #ifdef PADDLE_WITH_HIP paddle::memory::AllocationPtr data_alloc, col_alloc; // TODO(chentianyu03): try to find a method to remove the Alloc function data_alloc = paddle::memory::Alloc(paddle::platform::CUDAPinnedPlace(), in_num * sizeof(T*)); inputs_data = reinterpret_cast(data_alloc->ptr()); // TODO(chentianyu03): try to find a method to remove the Alloc function col_alloc = paddle::memory::Alloc(paddle::platform::CUDAPinnedPlace(), inputs_col_num * sizeof(int)); inputs_col = reinterpret_cast(col_alloc->ptr()); #endif inputs_col[0] = 0; bool has_same_shape = true; for (int i = 0; i < in_num; ++i) { int64_t t_cols = input[i].numel() / in_row; if (has_same_shape) { if (t_cols != in_col) has_same_shape = false; } out_col += t_cols; inputs_col[i + 1] = out_col; inputs_data[i] = input[i].data(); } dim3 block_dims; dim3 grid_dims; GetBlockDims(context, out_row, out_col, &block_dims, &grid_dims); paddle::memory::allocation::AllocationPtr tmp_dev_ins_data; const T** dev_ins_data = nullptr; if (!has_same_shape || in_num < 2 || in_num > 4) { tmp_dev_ins_data = paddle::memory::Alloc(context, in_num * sizeof(T*)); auto* restored = paddle::platform::RestoreHostMemIfCapturingCUDAGraph( inputs_data, in_num); paddle::memory::Copy(context.GetPlace(), tmp_dev_ins_data->ptr(), paddle::platform::CPUPlace(), restored, in_num * sizeof(T*), context.stream()); dev_ins_data = reinterpret_cast(tmp_dev_ins_data->ptr()); } if (has_same_shape) { if (in_num == 2) { ConcatKernel_<<>>( inputs_data[0], inputs_data[1], in_col, out_row, out_col, output->data()); } else if (in_num == 3) { ConcatKernel_<<>>( inputs_data[0], inputs_data[1], inputs_data[2], in_col, out_row, out_col, output->data()); } else if (in_num == 4) { ConcatKernel_<<>>( inputs_data[0], inputs_data[1], inputs_data[2], inputs_data[3], in_col, out_row, out_col, output->data()); } else { ConcatKernel_<<>>( dev_ins_data, in_num, in_col, out_row, out_col, output->data()); } } else { auto tmp_dev_ins_col_data = paddle::memory::Alloc(context, inputs_col_num * sizeof(int64_t)); auto* restored = paddle::platform::RestoreHostMemIfCapturingCUDAGraph( inputs_col, inputs_col_num); paddle::memory::Copy(context.GetPlace(), tmp_dev_ins_col_data->ptr(), paddle::platform::CPUPlace(), restored, inputs_col_num * sizeof(int64_t), context.stream()); int64_t* dev_ins_col_data = static_cast(tmp_dev_ins_col_data->ptr()); ConcatKernel_<<>>( dev_ins_data, dev_ins_col_data, static_cast(inputs_col_num), out_row, out_col, output->data()); } #ifdef PADDLE_WITH_HIP // Prevent the pinned memory value from being covered and release the memory // after the launch kernel of the stream is executed (reapply pinned memory // next time) auto* data_alloc_released = data_alloc.release(); auto* col_alloc_released = col_alloc.release(); context.AddStreamCallback([data_alloc_released, col_alloc_released] { VLOG(4) << "Delete cuda pinned at " << data_alloc_released; VLOG(4) << "Delete cuda pinned at " << col_alloc_released; paddle::memory::allocation::Allocator::AllocationDeleter( data_alloc_released); paddle::memory::allocation::Allocator::AllocationDeleter( col_alloc_released); }); #endif } }; template class SplitFunctor { public: void operator()(const phi::GPUContext& context, const phi::DenseTensor& input, const std::vector& ref_inputs, int axis, std::vector* outputs) { // NOTE(zhiqiu): split a tensor of shape [0,3,4] at axis=1, result in 3 // tensors of shape [0,1,4] if (input.numel() == 0) { return; } // TODO(zcd): Add input data validity checking int o_num = outputs->size(); int64_t out_row = 1; auto dim_0 = ref_inputs[0]->dims(); for (int i = 0; i < axis; ++i) { out_row *= dim_0[i]; } int64_t out0_col = ref_inputs[0]->numel() / out_row; int64_t in_col = 0, in_row = out_row; bool has_same_shape = true; int outputs_cols_num = o_num + 1; std::vector outputs_data_vec(o_num); std::vector outputs_cols_vec(outputs_cols_num); T** outputs_data = outputs_data_vec.data(); int64_t* outputs_cols = outputs_cols_vec.data(); // There are some differences between hip runtime and NV runtime. // In NV, when the pageable memory data less than 64K is transferred from // hosttodevice, it will be automatically asynchronous. // However, only pinned memory in hip can copy asynchronously // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#concurrent-execution-host-device // 3.2.6.1. Concurrent Execution between Host and Device // Memory copies from host to device of a memory block of 64 KB or less #ifdef PADDLE_WITH_HIP paddle::memory::AllocationPtr data_alloc, cols_alloc; // TODO(chentianyu03): try to find a method to remove the Alloc function data_alloc = paddle::memory::Alloc(paddle::platform::CUDAPinnedPlace(), o_num * sizeof(T*)); outputs_data = reinterpret_cast(data_alloc->ptr()); // TODO(chentianyu03): try to find a method to remove the Alloc function cols_alloc = paddle::memory::Alloc(paddle::platform::CUDAPinnedPlace(), (outputs_cols_num) * sizeof(int64_t)); outputs_cols = reinterpret_cast(cols_alloc->ptr()); #endif outputs_cols[0] = 0; for (int i = 0; i < o_num; ++i) { int64_t t_col = ref_inputs.at(i)->numel() / out_row; if (has_same_shape) { if (t_col != out0_col) has_same_shape = false; } in_col += t_col; outputs_cols[i + 1] = in_col; if (outputs->at(i) != nullptr) { outputs_data[i] = outputs->at(i)->data(); } else { outputs_data[i] = nullptr; } } dim3 block_dims; dim3 grid_dims; GetBlockDims(context, out_row, in_col, &block_dims, &grid_dims); paddle::memory::allocation::AllocationPtr tmp_dev_outs_data; T** dev_out_gpu_data = nullptr; if (!has_same_shape || o_num < 2 || o_num > 4) { // TODO(chentianyu03): try to find a method to remove the Alloc function tmp_dev_outs_data = paddle::memory::Alloc(context, o_num * sizeof(T*)); auto* restored = paddle::platform::RestoreHostMemIfCapturingCUDAGraph( outputs_data, o_num); paddle::memory::Copy(context.GetPlace(), tmp_dev_outs_data->ptr(), paddle::platform::CPUPlace(), restored, o_num * sizeof(T*), context.stream()); dev_out_gpu_data = reinterpret_cast(tmp_dev_outs_data->ptr()); } if (has_same_shape) { if (o_num == 2) { SplitKernel_<<>>( input.data(), in_row, in_col, out0_col, outputs_data[0], outputs_data[1]); } else if (o_num == 3) { SplitKernel_<<>>( input.data(), in_row, in_col, out0_col, outputs_data[0], outputs_data[1], outputs_data[2]); } else if (o_num == 4) { SplitKernel_<<>>( input.data(), in_row, in_col, out0_col, outputs_data[0], outputs_data[1], outputs_data[2], outputs_data[3]); } else { SplitKernel_<<>>( input.data(), in_row, in_col, out0_col, dev_out_gpu_data); } } else { auto tmp_dev_ins_col_data = // TODO(chentianyu03): try to find a method to remove the Alloc // function paddle::memory::Alloc(context, outputs_cols_num * sizeof(int64_t)); auto* restored = paddle::platform::RestoreHostMemIfCapturingCUDAGraph( outputs_cols, outputs_cols_num); paddle::memory::Copy(context.GetPlace(), tmp_dev_ins_col_data->ptr(), paddle::platform::CPUPlace(), restored, outputs_cols_num * sizeof(int64_t), context.stream()); int64_t* dev_outs_col_data = reinterpret_cast(tmp_dev_ins_col_data->ptr()); SplitKernel_<<>>( input.data(), in_row, in_col, dev_outs_col_data, static_cast(outputs_cols_num), dev_out_gpu_data); } #ifdef PADDLE_WITH_HIP // Prevent the pinned memory value from being covered and release the memory // after the launch kernel of the stream is executed (reapply pinned memory // next time) auto* data_alloc_released = data_alloc.release(); auto* cols_alloc_released = cols_alloc.release(); context.AddStreamCallback([data_alloc_released, cols_alloc_released] { paddle::memory::allocation::Allocator::AllocationDeleter( data_alloc_released); paddle::memory::allocation::Allocator::AllocationDeleter( cols_alloc_released); }); #endif } }; #define DEFINE_FUNCTOR(type) \ template class ConcatFunctor; \ template class SplitFunctor FOR_ALL_TYPES(DEFINE_FUNCTOR); } // namespace funcs } // namespace phi