# /usr/bin/env python # -*- coding:utf-8 -*- # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The script fetch and preprocess movie_reviews data set that provided by NLTK TODO(yuyang18): Complete dataset. """ from __future__ import print_function import six import collections from itertools import chain import nltk from nltk.corpus import movie_reviews import paddle.dataset.common __all__ = ['train', 'test', 'get_word_dict'] NUM_TRAINING_INSTANCES = 1600 NUM_TOTAL_INSTANCES = 2000 def download_data_if_not_yet(): """ Download the data set, if the data set is not download. """ try: # make sure that nltk can find the data if paddle.dataset.common.DATA_HOME not in nltk.data.path: nltk.data.path.append(paddle.dataset.common.DATA_HOME) movie_reviews.categories() except LookupError: print("Downloading movie_reviews data set, please wait.....") nltk.download( 'movie_reviews', download_dir=paddle.dataset.common.DATA_HOME) print("Download data set success.....") print("Path is " + nltk.data.find('corpora/movie_reviews').path) def get_word_dict(): """ Sorted the words by the frequency of words which occur in sample :return: words_freq_sorted """ words_freq_sorted = list() word_freq_dict = collections.defaultdict(int) download_data_if_not_yet() for category in movie_reviews.categories(): for field in movie_reviews.fileids(category): for words in movie_reviews.words(field): word_freq_dict[words] += 1 words_sort_list = list(six.iteritems(word_freq_dict)) words_sort_list.sort(cmp=lambda a, b: b[1] - a[1]) for index, word in enumerate(words_sort_list): words_freq_sorted.append((word[0], index)) return words_freq_sorted def sort_files(): """ Sorted the sample for cross reading the sample :return: files_list """ files_list = list() neg_file_list = movie_reviews.fileids('neg') pos_file_list = movie_reviews.fileids('pos') files_list = list( chain.from_iterable(list(zip(neg_file_list, pos_file_list)))) return files_list def load_sentiment_data(): """ Load the data set :return: data_set """ data_set = list() download_data_if_not_yet() words_ids = dict(get_word_dict()) for sample_file in sort_files(): words_list = list() category = 0 if 'neg' in sample_file else 1 for word in movie_reviews.words(sample_file): words_list.append(words_ids[word.lower()]) data_set.append((words_list, category)) return data_set def reader_creator(data): """ Reader creator, generate an iterator for data set :param data: train data set or test data set """ for each in data: yield each[0], each[1] def train(): """ Default training set reader creator """ data_set = load_sentiment_data() return reader_creator(data_set[0:NUM_TRAINING_INSTANCES]) def test(): """ Default test set reader creator """ data_set = load_sentiment_data() return reader_creator(data_set[NUM_TRAINING_INSTANCES:]) def fetch(): nltk.download('movie_reviews', download_dir=paddle.dataset.common.DATA_HOME)