# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import os import sys import paddle import paddle.fluid as fluid import unittest import paddle.fluid.layers as layers from test_collective_api_base import TestCollectiveAPIRunnerBase, runtime_main import pickle import paddle.distributed.utils.moe_utils as moe_utils paddle.enable_static() class TestCollectiveGlobalScatterAPI(TestCollectiveAPIRunnerBase): def __init__(self): self.global_ring_id = 0 def get_model(self, main_prog, startup_program, rank, indata=None): with fluid.program_guard(main_prog, startup_program): seed = os.getpid() np.random.seed(seed) in_feat = 2 n_expert = 2 world_size = 2 tot_expert = n_expert * world_size local_input_buf = paddle.static.data(name="local_input_buf", shape=[-1, in_feat], dtype="float32") local_expert_count = paddle.static.data(name="local_expert_count", shape=[tot_expert], dtype="int64") global_expert_count = [] paddle.distributed.alltoall( paddle.split(local_expert_count, 2, axis=0), global_expert_count) global_expert_count = paddle.concat(global_expert_count, axis=0) output = moe_utils.global_scatter(local_input_buf, local_expert_count, global_expert_count) return [output] def run_trainer(self, args): train_prog = fluid.Program() startup_prog = fluid.Program() endpoints = args["endpoints"].split(",") rank = args["trainerid"] current_endpoint = args["currentendpoint"] nranks = 2 paddle.distributed.init_parallel_env() if args['backend'] == 'nccl': device_id = int(os.getenv("FLAGS_selected_gpus", "0")) place = fluid.CUDAPlace( device_id) #if args.use_gpu else fluid.CPUPlace() elif args['backend'] == 'bkcl': device_id = int(os.getenv("FLAGS_selected_xpus", "0")) place = fluid.XPUPlace(device_id) else: place = fluid.CPUPlace() np.random.seed(os.getpid()) in_feat = 2 n_expert = 2 world_size = 2 tot_expert = n_expert * world_size local_expert_count = np.random.randint(1, 4, size=tot_expert).astype("int64") fwd_expert_count = sum(local_expert_count) local_input_buf = np.random.rand(fwd_expert_count, in_feat).astype("float32") if args['static_mode']: result = self.get_model(train_prog, startup_prog, rank) exe = fluid.Executor(place) exe.run(startup_prog) fetch_list = [] for elem in result: fetch_list.append(elem.name) out = exe.run(train_prog, feed={ 'local_expert_count': local_expert_count, 'local_input_buf': local_input_buf }, fetch_list=fetch_list) sys.stdout.buffer.write(pickle.dumps(out)) if __name__ == "__main__": runtime_main(TestCollectiveGlobalScatterAPI, "global_scatter")