/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/ir/graph_helper.h" #include #include #include "paddle/fluid/framework/details/multi_devices_helper.h" #include "paddle/fluid/framework/op_proto_maker.h" DECLARE_bool(convert_all_blocks); PADDLE_DEFINE_EXPORTED_string(print_sub_graph_dir, "", "FLAGS_print_sub_graph_dir is used " "to print the nodes of sub_graphs."); namespace paddle { namespace framework { namespace ir { namespace { template void SortHelper(const std::map, NodeComparator> &adj_list, ir::Node *node, std::unordered_set *visited, std::vector *ret) { visited->insert(node); for (auto adj : adj_list.at(node)) { if (visited->find(adj) == visited->end()) { SortHelper(adj_list, adj, visited, ret); } } VLOG(5) << "topology sort insert: " << node->Name() << " " << reinterpret_cast(node) << " input " << node->inputs.size(); ret->push_back(node); } template bool HasCircleHelper(ir::Node *node, const std::map, NodeComparator> &adj_list, std::unordered_set *visited, std::unordered_set *in_trace, std::vector> *circles) { if (visited->find(node) == visited->end()) { visited->insert(node); in_trace->insert(node); for (ir::Node *in : adj_list.at(node)) { if (visited->find(in) == visited->end() && HasCircleHelper( in, adj_list, visited, in_trace, circles)) { return true; } else if (in_trace->find(in) != in_trace->end()) { if (circles != nullptr) { std::vector circle; circle.emplace_back(in); ir::Node *p = in; for (auto &adj : adj_list.at(p)) { if (in_trace->count(adj)) { circle.emplace_back(adj); p = adj; } } circles->emplace_back(circle); } return true; } } } in_trace->erase(node); return false; } template bool HasCircleInternal(const std::map, NodeComparator> &adj_list, std::vector> *circles) { std::unordered_set visited; std::unordered_set in_trace; for (auto &adj : adj_list) { if (HasCircleHelper( adj.first, adj_list, &visited, &in_trace, circles)) { return true; } } return false; } } // namespace bool HasCircle(const Graph &graph) { return HasCircleInternal(BuildOperationAdjList(graph), nullptr); } bool VarDescIsConsistency(const Graph &graph) { std::unordered_map> var_name2node_set; for (ir::Node *node : graph.Nodes()) { if (node->IsVar() && node->Var()) { var_name2node_set[node->Var()->Name()].emplace(node); } } for (auto &iter : var_name2node_set) { auto &first_node = *iter.second.begin(); bool is_persistable = std::any_of(iter.second.begin(), iter.second.end(), [&first_node](const ir::Node *node) { return node->Var()->Persistable(); }); if (is_persistable) { bool is_consistency = std::all_of(iter.second.begin(), iter.second.end(), [&first_node](const ir::Node *node) { return *node->Var() == *first_node->Var(); }); if (!is_consistency) return false; } } return true; } bool FindCircleSubGraph(const Graph &graph, std::vector> *circles) { return HasCircleInternal(BuildOperationAdjList(graph), circles); } std::vector TopologySortOperations(const Graph &graph) { std::map, ir::NodeComp> adj_list = BuildOperationAdjList(graph); PADDLE_ENFORCE_EQ(HasCircleInternal(adj_list, nullptr), false, platform::errors::InvalidArgument( "Generated graph shouldn't contain cycle.")); std::unordered_set visited; std::vector ret; for (auto adj : adj_list) { if (visited.find(adj.first) == visited.end()) { SortHelper(adj_list, adj.first, &visited, &ret); } } return ret; } bool IsTopologySortOperationsUnique(const Graph &graph) { auto nodes = TopologySortOperations(graph); size_t n = nodes.size(); for (size_t i = 1; i < n; ++i) { auto *prev_op = nodes[i - 1]; auto *cur_op = nodes[i]; std::unordered_set prev_op_outputs; for (auto *output : prev_op->outputs) { prev_op_outputs.insert(output); } bool found = false; for (auto *input : cur_op->inputs) { if (prev_op_outputs.count(input) > 0) { found = true; break; } } if (!found) { return false; } } return true; } // Build operator outlink edge table. std::map> BuildOperationOutAdjList( const Graph &graph) { std::map> adj_list; for (auto &n : graph.Nodes()) { if (!n->IsOp()) continue; if (adj_list.find(n) == adj_list.end()) { adj_list[n] = std::unordered_set(); } for (auto &var : n->outputs) { for (auto &adj_n : var->outputs) { PADDLE_ENFORCE_EQ(adj_n->NodeType(), ir::Node::Type::kOperation, platform::errors::InvalidArgument( "Node(%s)'s type(%d) must be kOperation type.", adj_n->Name(), static_cast(adj_n->NodeType()))); VLOG(40) << "adj " << adj_n->Name() << reinterpret_cast(adj_n) << " -> " << n->Name() << reinterpret_cast(n) << " via " << var->Name() << reinterpret_cast(var); adj_list[n].insert(adj_n); } } } return adj_list; } std::vector OpDFSSort(const Graph &graph) { auto edge_table = BuildOperationOutAdjList(graph); std::stack stack; for (auto &ele : edge_table) { if (ele.first->inputs.empty()) { // find the input ops (those without input vars) stack.push(ele.first); } else { // find the ops with only persistable vars as inputs. bool all_persistable = true; for (auto *input : ele.first->inputs) { if (!(input->IsVar() && input->Var() && input->Var()->Persistable())) { all_persistable = false; } } if (all_persistable) { stack.push(ele.first); } } } std::vector res; // start from the feed op and DFS std::unordered_set unique_set; while (!stack.empty()) { // will start from the last feed by default. auto cur = stack.top(); stack.pop(); unique_set.insert(cur); res.push_back(cur); for (auto *op : edge_table[cur]) { if (!unique_set.count(op)) { stack.push(op); } } } return res; } std::vector TopologyDfsSortOperations(const Graph &graph) { std::vector nodes; std::unordered_map in_degree; auto set_out_ops_ready = [&](Node *var) { for (auto *op : var->outputs) { --in_degree[op]; } }; // build in_degree for (auto *node : graph.Nodes()) { if (node->IsOp()) { in_degree[node] += node->inputs.size(); } else if (node->IsVar() && node->inputs.empty()) { // put all the inputs of the whole graph ready. set_out_ops_ready(node); } } std::deque op_queue; // first visit for (auto &node : OpDFSSort(graph)) { if (node->IsOp()) { op_queue.push_back(node); } } // traverse the graph int num_ops = op_queue.size(); while (num_ops) { for (auto it = op_queue.begin(); it != op_queue.end(); it++) { auto *&cur_op = *it; if (!cur_op || in_degree[cur_op] > 0) continue; // visit this node // put all the output var of this op valid. for (auto *out_var : cur_op->outputs) { if (!out_var) continue; set_out_ops_ready(out_var); } VLOG(8) << "visit " << cur_op->Name(); nodes.push_back(cur_op); cur_op = nullptr; num_ops--; } } return nodes; } size_t GraphNum(const Graph &graph) { std::unordered_set nodes(graph.Nodes()); std::unordered_set visited_nodes; visited_nodes.reserve(nodes.size()); std::deque q_nodes; std::vector> graph_nodes; std::unordered_set g_nodes; // q_set used to record records in the queue. std::unordered_set q_set; size_t graph_count = 0; auto traverse_nodes = [&visited_nodes, &q_nodes, &q_set](const std::vector &nodes) { for (auto n : nodes) { if (visited_nodes.count(n) == 0 && q_set.count(n) == 0) { q_nodes.push_back(n); q_set.insert(n); } } }; while (visited_nodes.size() != nodes.size()) { if (!q_nodes.empty()) { auto cur_node = q_nodes.front(); q_nodes.pop_front(); q_set.erase(cur_node); visited_nodes.insert(cur_node); g_nodes.insert(cur_node); traverse_nodes(cur_node->inputs); traverse_nodes(cur_node->outputs); } else { ++graph_count; if (g_nodes.size()) { graph_nodes.emplace_back(g_nodes); } g_nodes.clear(); for (auto &n : nodes) { if (visited_nodes.count(n) == 0) { q_nodes.push_back(n); q_set.insert(n); break; } } } } if (g_nodes.size()) { graph_nodes.emplace_back(g_nodes); } if (FLAGS_print_sub_graph_dir.size()) { if (graph_nodes.size() > 1) { std::stringstream out; for (auto &g_n : graph_nodes) { out << "graph_nodes: " << g_n.size() << "\n"; } out << "\n\n"; for (auto &g_n : graph_nodes) { out << "graph_nodes: " << g_n.size(); for (auto &node : g_n) { out << "\nNode: " << node->Name() << " in ["; for (auto &n : node->inputs) { out << n->Name() << ", "; } out << "], out["; for (auto &n : node->outputs) { out << n->Name() << ", "; } out << "]"; } out << "\n\n\n"; } std::unique_ptr fout( new std::ofstream(FLAGS_print_sub_graph_dir)); PADDLE_ENFORCE_EQ(fout->good(), true, platform::errors::Unavailable( "Can not open file %s for printing the graph.", FLAGS_print_sub_graph_dir)); *fout << out.str(); } } return graph_count; } void CleanIndividualNodes(Graph *graph) { std::unordered_set nodes2rm; for (auto *node : graph->Nodes()) { if (node->inputs.empty() && node->outputs.empty()) { nodes2rm.insert(node); } } for (auto *node : nodes2rm) { graph->RemoveNode(node); } } std::vector TopologyVarientSort(const Graph &graph, SortKind sort_kind) { switch (sort_kind) { case SortKind::TS: return framework::ir::TopologySortOperations(graph); default: return framework::ir::TopologyDfsSortOperations(graph); } } class DescOrderComparator { public: bool operator()(Node *const &n1, Node *const &n2) const { if (n1->DescOrder() < n2->DescOrder()) { return true; } else if (n1->DescOrder() == n2->DescOrder()) { return n1->id() < n2->id() || (n1->id() == n2->id() && n1->ToString() < n2->ToString()); } return false; } }; std::vector TopologySortGraphByDescOrder(const Graph &graph) { std::map, DescOrderComparator> adj_list = BuildOperationAdjList(graph); PADDLE_ENFORCE_EQ(HasCircleInternal(adj_list, nullptr), false, platform::errors::InvalidArgument( "Generated graph shouldn't contain cycle.")); std::unordered_set visited; std::vector ret; for (auto adj : adj_list) { if (visited.find(adj.first) == visited.end()) { SortHelper(adj_list, adj.first, &visited, &ret); } } return ret; } static OpDesc *ReplaceScaleLossGradOp(const Node &node, OpDesc *desc) { desc->SetType("fill_constant"); desc->SetAttr( OpProtoAndCheckerMaker::OpRoleAttrName(), (static_cast(OpRole::kBackward) | static_cast(OpRole::kLoss))); desc->SetAttr("value", 1.0f); desc->SetAttr("shape", std::vector({1})); std::vector output_names; for (auto out : node.outputs) { output_names.emplace_back(out->Name()); } desc->SetOutput("Out", output_names); return desc; } static void GetGraphOpDesc(const std::vector &nodes, std::vector *ops) { auto is_fused_opt = [](Node *n) -> bool { auto op_type = n->Op()->Type(); auto is_opt = (op_type == "adam" || op_type == "momentum" || op_type == "sgd"); auto input_names = n->Op()->InputArgumentNames(); auto contains_fused_var = std::any_of( input_names.begin(), input_names.end(), [](std::string name) { return name.find(details::kFusedVarNamePrefix) != std::string::npos; }); VLOG(4) << is_opt << " " << contains_fused_var; return is_opt && contains_fused_var; }; for (Node *n : nodes) { // if node is not Op, skip if (!n->IsOp()) continue; // create fill_constant op if (n->Name() == "scale_loss_grad") { ops->emplace_back(); auto &desc = ops->back(); ReplaceScaleLossGradOp(*n, &desc); } else if (n->Op()) { VLOG(4) << "convert op node to desc " << n->Op()->Type(); VLOG(4) << n->ToString(); if (is_fused_opt(n)) { OpDesc depend_desc(n->Op()->Block()); std::vector deps; for (auto in : n->inputs) { if (in->IsVar() && !in->IsCtrlVar()) { deps.push_back(in->Name()); } } depend_desc.SetType("depend"); depend_desc.SetInput("X", n->Op()->Inputs().at(n->Op()->InputNames()[0])); depend_desc.SetInput("Dep", deps); depend_desc.SetOutput("Out", n->Op()->Inputs().at(n->Op()->InputNames()[0])); ops->emplace_back(depend_desc); VLOG(4) << "add depend op"; } ops->emplace_back(*n->Op()); } // delete no OpDesc op } } static void GraphToBlock(const Graph &graph, proto::BlockDesc *block, const SortKind *sort_kind) { // Remove the unneeded variables after memory optimization. std::unordered_set vars2remove; if (graph.Has(kGraphToProgramVarsToRemove)) { vars2remove = graph.Get>(kGraphToProgramVarsToRemove); VLOG(2) << "graph (id: " << block->idx() << ") to program remove " << vars2remove.size() << " nodes"; } block->clear_vars(); std::unordered_set visited_vars; for (Node *n : graph.Nodes()) { if (n->IsVar()) { if (n->Var() && visited_vars.count(n->Var()->Name()) == 0 && !vars2remove.count(n->Var()->Name()) && n->GetVarNodeBlockId() == graph.GetBlockId()) { visited_vars.insert(n->Var()->Name()); block->add_vars()->MergeFrom(*n->Var()->Proto()); } } } block->clear_ops(); std::vector nodes; if (sort_kind != nullptr) { // Inference Memory Optimize relays on this branch. nodes = TopologyVarientSort(graph, *sort_kind); } else { if (FLAGS_convert_all_blocks) { nodes = TopologySortGraphByDescOrder(graph); } else { nodes = TopologySortOperations(graph); } } std::vector ops; GetGraphOpDesc(nodes, &ops); for (auto &op : ops) { block->add_ops()->MergeFrom(*op.Proto()); } } void GraphToProgram(const Graph &graph, ProgramDesc *program, const SortKind *sort_kind) { PADDLE_ENFORCE_EQ(graph.IsMainGraph(), true, platform::errors::InvalidArgument( "This graph is a sub_graph, " "and can't convert to program individually")); PADDLE_ENFORCE_NOT_NULL( program, platform::errors::InvalidArgument( "program must not be nullptr when converting graph to program")); proto::ProgramDesc program_pb(*(program->Proto())); auto block = program_pb.mutable_blocks(kRootBlockIndex); block->set_idx(kRootBlockIndex); if (FLAGS_convert_all_blocks) { GraphToBlock(*graph.GetSubGraph(kRootBlockIndex), block, sort_kind); VLOG(3) << "Graph to program need convert " << graph.SubGraphsSize() << " sub graph"; for (size_t idx = 0; idx < graph.SubGraphsSize(); ++idx) { // avoid kRootBlockIndex not 0 if (idx == kRootBlockIndex) continue; block = program_pb.add_blocks(); block->set_idx(idx); block->set_parent_idx(kRootBlockIndex); GraphToBlock(*graph.GetSubGraph(idx), block, sort_kind); } } else { GraphToBlock(graph, block, sort_kind); } program->CopyFrom(program_pb); } static std::vector> GetOpDependencies( const BlockDesc &block, const std::unordered_set &nodes) { auto block_ops = block.AllOps(); size_t op_num = block_ops.size(); std::unordered_map> preceding_ops(op_num); std::unordered_map preceding_deps(op_num); std::unordered_map> pending_ops(op_num); std::queue ready_ops; for (const auto *node : nodes) { if (!node->IsOp()) continue; auto &tmp_preceding_ops = preceding_ops[node]; for (const auto *in_var : node->inputs) { for (const auto *in_op : in_var->inputs) { tmp_preceding_ops.insert(in_op); } } if (tmp_preceding_ops.empty()) { ready_ops.push(node); } preceding_deps[node] = tmp_preceding_ops.size(); auto &tmp_pending_ops = pending_ops[node]; for (const auto *out_var : node->outputs) { for (const auto *out_op : out_var->outputs) { tmp_pending_ops.insert(out_op); } } } std::unordered_map> all_preceding_ops; while (!ready_ops.empty()) { const auto *cur_op = ready_ops.front(); ready_ops.pop(); auto &all_preceding_ops_of_cur_op = all_preceding_ops[cur_op]; for (const auto *preceding_op : preceding_ops.at(cur_op)) { all_preceding_ops_of_cur_op.insert(preceding_op); auto &prev_preceding_ops = all_preceding_ops[preceding_op]; all_preceding_ops_of_cur_op.insert(prev_preceding_ops.begin(), prev_preceding_ops.end()); } for (const auto *pending_op : pending_ops.at(cur_op)) { if (--preceding_deps.at(pending_op) == 0) { ready_ops.push(pending_op); } } } std::unordered_map op_id_to_idx(op_num); for (const auto *op_desc : block_ops) { size_t op_idx = op_id_to_idx.size(); PADDLE_ENFORCE_EQ( op_id_to_idx.emplace(op_desc->OriginalId(), op_idx).second, true, platform::errors::InvalidArgument( "There should not be duplicate op id: %d", op_desc->OriginalId())); } std::vector> dep_matrix(op_num); for (size_t i = 0; i < op_num; ++i) { dep_matrix[i].resize(op_num, ir::Node::Dep::kNoDep); dep_matrix[i][i] = ir::Node::Dep::kSame; } auto get_op_idx_by_id = [&op_id_to_idx](uint64_t op_id) { auto iter = op_id_to_idx.find(op_id); PADDLE_ENFORCE_NE(iter, op_id_to_idx.end(), platform::errors::InvalidArgument( "Cannot find OpDesc with id %d", op_id)); return iter->second; }; for (const auto &pair : all_preceding_ops) { const auto *cur_op_node = pair.first; size_t op_idx_1 = get_op_idx_by_id(cur_op_node->Op()->OriginalId()); for (const auto *preceding_op_node : pair.second) { size_t op_idx_2 = get_op_idx_by_id(preceding_op_node->Op()->OriginalId()); dep_matrix[op_idx_1][op_idx_2] = ir::Node::Dep::kAfter; dep_matrix[op_idx_2][op_idx_1] = ir::Node::Dep::kBefore; } } return dep_matrix; } std::vector>> GetOpDependencies( const ProgramDesc &program) { ir::Graph graph(program); size_t block_num = program.Size(); std::vector>> deps; deps.reserve(block_num); for (size_t i = 0; i < block_num; ++i) { deps.emplace_back( GetOpDependencies(program.Block(i), graph.GetSubGraph(i)->Nodes())); } return deps; } } // namespace ir } // namespace framework } // namespace paddle