// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tensorrt/op_teller.h" #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/data_layout.h" namespace paddle { namespace framework { class OpDesc; } // namespace framework } // namespace paddle namespace paddle { namespace inference { namespace tensorrt { // Just tell by the op_types. struct SimpleOpTypeSetTeller : public Teller { SimpleOpTypeSetTeller() { #if IS_TRT_VERSION_GE(5130) teller_set.insert("relu6"); teller_set.insert("hard_sigmoid"); teller_set.insert("clip"); int8_teller_set.insert("relu6"); int8_teller_set.insert("hard_sigmoid"); int8_teller_set.insert("clip"); #endif #if IS_TRT_VERSION_GE(6000) teller_set.insert("fused_embedding_eltwise_layernorm"); teller_set.insert("multihead_matmul"); teller_set.insert("skip_layernorm"); teller_set.insert("slice"); #endif #if IS_TRT_VERSION_GE(7130) teller_set.insert("group_norm"); int8_teller_set.insert("multihead_matmul"); int8_teller_set.insert("skip_layernorm"); int8_teller_set.insert("fused_embedding_eltwise_layernorm"); int8_teller_set.insert("matmul"); int8_teller_set.insert("stack"); int8_teller_set.insert("slice"); #endif } bool operator()(const std::string& op_type, const framework::OpDesc& desc, bool use_no_calib_int8) override { if (use_no_calib_int8) { return int8_teller_set.count(op_type); } else { return teller_set.count(op_type); } } private: // use this set for no calib int8. std::unordered_set int8_teller_set{"mul", "conv2d", "conv2d_fusion", "pool2d", "relu", "depthwise_conv2d", "softmax", "sigmoid", "batch_norm", "elementwise_add", "leaky_relu", "fc", "concat", "scale", "elementwise_mul", "conv2d_transpose", "hard_swish"}; std::unordered_set teller_set{ "mul", "matmul", "conv2d", "conv2d_fusion", "pool2d", "relu", "softmax", "sigmoid", "hard_swish", "depthwise_conv2d", "batch_norm", "concat", "tanh", "pad", "elementwise_add", "elementwise_mul", "dropout", "prelu", "conv2d_transpose", "leaky_relu", "fc", "shuffle_channel", "swish", "split", "instance_norm", "gelu", "layer_norm", "scale", "stack", "transpose2", "transpose", "flatten2", "flatten", "gather", "yolo_box", "roi_align", "affine_channel", "nearest_interp", "anchor_generator", }; }; bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8, bool with_dynamic_shape) { const std::string op_type = node->Op()->Type(); const framework::OpDesc desc = *node->Op(); // do not support the op which is labeled the `skip_quant` if ((desc.HasAttr("namescope") && BOOST_GET_CONST(std::string, desc.GetAttr("op_namescope")) == "/skip_quant_2/") || desc.HasAttr("skip_quant")) return false; for (auto& teller : tellers_) { if (op_type == "depthwise_conv2d") { std::vector paddings = BOOST_GET_CONST(std::vector, desc.GetAttr("paddings")); if (paddings.size() > 2) return false; } if (op_type == "pool2d") { std::vector paddings = BOOST_GET_CONST(std::vector, desc.GetAttr("paddings")); if (paddings.size() > 2) return false; if (desc.Input("X").size() != 1) { VLOG(3) << "TRT Pool2d expect 1 input, but got " << desc.Input("X").size(); return false; } if (desc.Output("Out").size() != 1) { VLOG(3) << "TRT Pool2d has only 1 output, but got " << desc.Output("Out").size(); return false; } if (!desc.HasAttr("pooling_type")) { return false; } else { std::string pool_type = BOOST_GET_CONST(std::string, desc.GetAttr("pooling_type")); if (pool_type != "max" && pool_type != "avg") { VLOG(3) << "Wrong pool op type, the trt do not support the " << pool_type << " pool type."; return false; } } } if (op_type == "conv2d" || op_type == "conv2d_transpose" || op_type == "conv2d_fusion") { std::vector paddings = BOOST_GET_CONST(std::vector, desc.GetAttr("paddings")); // conv2d and conv2d_transpose need padding check if (paddings.size() > 2 && op_type != "conv2d_fusion") return false; if (desc.Input("Input").size() != 1) { VLOG(3) << "TRT Conv2d expect 1 input, but got " << desc.Input("Input").size() << " input."; return false; } if (desc.Input("Filter").size() != 1) { VLOG(3) << "TRT Conv2d expect 1 filter, but got " << desc.Input("Filter").size() << " filter."; return false; } if (desc.HasAttr("enable_int8")) { if (op_type == "conv2d" || op_type == "conv2d_fusion") { if (!desc.HasAttr("Input_scale")) { VLOG(3) << "Input scale not found. TRT int8" " requires conv/deconv to have " "input quantization scales."; return false; } } } if (op_type == "conv2d_transpose") { if (!desc.HasAttr("dilations")) { return false; } else { const std::vector dilations = BOOST_GET_CONST(std::vector, desc.GetAttr("dilations")); if (dilations[0] != 1 || dilations[1] != 1) { VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for " "tensorRT, but given (" << dilations[0] << ", " << dilations[1] << ")"; return false; } } } if (desc.Output("Output").size() != 1) { VLOG(3) << "TRT Conv2d expect 1 output, but got " << desc.Output("Output").size() << " output."; return false; } } if (op_type == "matmul") { auto* block = desc.Block(); for (auto& param_name : desc.Inputs()) { for (auto& var_name : param_name.second) { auto* var_desc = block->FindVar(var_name); const auto shape = var_desc->GetShape(); if (shape.size() < 3) { VLOG(3) << "matmul op dims < 3 not supported in tensorrt, but got dims " << shape.size() << ", so jump it."; return false; } } } } if (op_type == "group_norm") { if (!with_dynamic_shape) return false; bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups")); if (has_attrs == false) return false; auto registry = GetPluginRegistry(); if (registry == nullptr) return false; } if (op_type == "concat") { if (!desc.HasAttr("axis")) { return false; } else { int axis = BOOST_GET_CONST(int, desc.GetAttr("axis")); if (with_dynamic_shape) { if (axis < 0) return false; } else { if (axis <= 0) return false; } } } if (op_type == "transpose2" || op_type == "transpose") { if (!desc.HasAttr("axis")) { return false; } else { std::vector axis = BOOST_GET_CONST(std::vector, desc.GetAttr("axis")); if (!with_dynamic_shape && axis[0] != 0) return false; if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false; } } if (op_type == "flatten2") { // flatten doesn't support dynamic shape currently if (!desc.HasAttr("axis")) { return false; } else { if (with_dynamic_shape) return false; int axis = BOOST_GET_CONST(int, desc.GetAttr("axis")); if (axis != 1) return false; } } if (op_type == "flatten") { // flatten doesn't support dynamic shape currently if (!desc.HasAttr("axis")) { return false; } else { if (with_dynamic_shape) return false; int axis = BOOST_GET_CONST(int, desc.GetAttr("axis")); if (axis != 1) return false; } } if (op_type == "gather") { // current not support axis from input, use default 0 if (!with_dynamic_shape || desc.Input("Axis").size() > 0) return false; } if (op_type == "yolo_box") { if (with_dynamic_shape) return false; bool has_attrs = (desc.HasAttr("class_num") && desc.HasAttr("anchors") && desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") && desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y")); if (!has_attrs) return false; } if (op_type == "affine_channel") { if (!desc.HasAttr("data_layout")) return false; auto data_layout = framework::StringToDataLayout( BOOST_GET_CONST(std::string, desc.GetAttr("data_layout"))); if (data_layout != framework::DataLayout::kNCHW) return false; } if (op_type == "multiclass_nms") { if (with_dynamic_shape) return false; auto* block = desc.Block(); for (auto& param_name : desc.Inputs()) { for (auto& var_name : param_name.second) { auto* var_desc = block->FindVar(var_name); const auto shape = var_desc->GetShape(); if (shape.size() != 3) { VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, " "but got dims " << shape.size() << ", so jump it."; return false; } } } bool has_attrs = (desc.HasAttr("background_label") && desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") && desc.HasAttr("keep_top_k") && desc.HasAttr("normalized")); if (has_attrs == false) return false; auto nms_top_k = BOOST_GET_CONST(int, desc.GetAttr("nms_top_k")); if (nms_top_k < 0) return false; auto keep_top_k = BOOST_GET_CONST(int, desc.GetAttr("keep_top_k")); if (keep_top_k < 0) return false; auto registry = GetPluginRegistry(); if (registry == nullptr) return false; } if (op_type == "mul") { const int x_num_col_dims = desc.HasAttr("x_num_col_dims") ? BOOST_GET_CONST(int, desc.GetAttr("x_num_col_dims")) : (desc.HasAttr("in_num_col_dims") ? BOOST_GET_CONST(int, desc.GetAttr("in_num_col_dims")) : 1); if (x_num_col_dims != 1 && x_num_col_dims != 2) { return false; } } if (op_type == "fc") { const int x_num_col_dims = desc.HasAttr("x_num_col_dims") ? BOOST_GET_CONST(int, desc.GetAttr("x_num_col_dims")) : (desc.HasAttr("in_num_col_dims") ? BOOST_GET_CONST(int, desc.GetAttr("in_num_col_dims")) : 1); if (x_num_col_dims != 1 && x_num_col_dims != 2) { return false; } } if (op_type == "nearest_interp") { std::vector attrs{"data_layout", "interp_method", "align_corners", "scale", "out_h", "out_w"}; for (auto const attr : attrs) { if (!desc.HasAttr(attr)) return false; } auto data_layout = framework::StringToDataLayout( BOOST_GET_CONST(std::string, desc.GetAttr("data_layout"))); if (data_layout != framework::DataLayout::kNCHW && data_layout != framework::DataLayout::kNHWC) return false; auto interp_method = BOOST_GET_CONST(std::string, desc.GetAttr("interp_method")); if (interp_method != "nearest") return false; if (!desc.HasAttr("scale") || !desc.HasAttr("out_h") || !desc.HasAttr("out_w")) { return false; } else { auto scale = BOOST_GET_CONST(float, desc.GetAttr("scale")); auto out_h = BOOST_GET_CONST(int, desc.GetAttr("out_h")); auto out_w = BOOST_GET_CONST(int, desc.GetAttr("out_w")); if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) { if (out_h <= 0) { VLOG(3) << "out_h must be greater than 0 if scale is not set."; return false; } if (out_w <= 0) { VLOG(3) << "out_w must be greater than 0 if scale is not set."; return false; } } } } if (op_type == "roi_align") { if (!with_dynamic_shape) return false; std::vector attrs{"pooled_height", "pooled_width", "spatial_scale", "sampling_ratio"}; for (auto const attr : attrs) { if (!desc.HasAttr(attr)) return false; } const auto pooled_height = BOOST_GET_CONST(int, desc.GetAttr("pooled_height")); if (pooled_height <= 0) return false; const auto pooled_width = BOOST_GET_CONST(int, desc.GetAttr("pooled_width")); if (pooled_width <= 0) return false; const auto spatial_scale = BOOST_GET_CONST(float, desc.GetAttr("spatial_scale")); if (spatial_scale <= 0.f) return false; } if (op_type == "hard_swish") { if (desc.Input("X").size() != 1) { VLOG(3) << "HardSwish op has only 1 input, but got " << desc.Input("X").size(); return false; } if (desc.Output("Out").size() != 1) { VLOG(3) << "HardSwish op has only 1 output, but got " << desc.Output("Out").size(); return false; } } if (op_type == "batch_norm") { const std::vector bn_inputs = {"X", "Bias", "Mean", "Scale", "Variance"}; for (unsigned int i = 0; i < bn_inputs.size(); i++) { if (desc.Input(bn_inputs[i]).size() != 1) { VLOG(3) << "Invalid " << bn_inputs[i] << "'s size of batch_norm TRT " "converter. Expected 1, received " << desc.Input(bn_inputs[i]).size() << "."; return false; } } if (desc.Output("Y").size() != 1) { VLOG(3) << "Invalid output Y's size of batch_norm TRT " "converter. Expected 1, received " << desc.Output("Y").size() << "."; return false; } } if (op_type == "split") { if (desc.Input("X").size() != 1) { VLOG(3) << "Invalid input X's size of split TRT converter. " "Expected 1, received " << desc.Input("X").size() << "."; return false; } if (!desc.HasAttr("axis")) { return false; } else { int axis = BOOST_GET_CONST(int, desc.GetAttr("axis")); if (axis == 0) { VLOG(3) << "Invalid split axis. Split on batch is not supported in " "TensorRT"; return false; } } } if (op_type == "slice") { if (!desc.HasAttr("axes") || !desc.HasAttr("starts") || !desc.HasAttr("ends")) { return false; } else { std::vector axes = BOOST_GET_CONST(std::vector, desc.GetAttr("axes")); std::vector starts = BOOST_GET_CONST(std::vector, desc.GetAttr("starts")); std::vector ends = BOOST_GET_CONST(std::vector, desc.GetAttr("ends")); if (axes.size() != starts.size() || axes.size() != ends.size()) { return false; } if (!with_dynamic_shape) { for (size_t i = 0; i < axes.size(); i++) { if (axes[i] == 0) { VLOG(3) << "Invalid slice axis. Slice on batch axis is not " "supported in TensorRT"; return false; } } } } } if (op_type == "elementwise_add" || op_type == "elementwise_mul") { if (desc.Input("X").size() != 1) { VLOG(3) << "The input op's Input(\"X\").size() " "should equal to 1, but received Input(\"X\").size() = " << desc.Input("X").size() << "."; return false; } if (desc.Input("Y").size() != 1) { VLOG(3) << "The input op's Input(\"Y\").size() " "should equal to 1, but received Input(\"Y\").size() = " << desc.Input("Y").size() << "."; return false; } if (desc.Output("Out").size() != 1) { VLOG(3) << "The input op's Output(\"Out\").size() " "should equal to 1, but reveceid Output(\"Out\").size() = " << desc.Output("Out").size() << "."; return false; } } if (op_type == "stack") { if (!with_dynamic_shape) { VLOG(3) << "static shape mode is not supported for TRT stack.\n" "You can use the config.SetTRTDynamicShapeInfo(...) interface" " to set the shape information to run the dynamic shape " "mode."; return false; } } if (op_type == "fused_embedding_eltwise_layernorm") { if (!with_dynamic_shape) { VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic " "shape mode."; return false; } if (desc.Input("Ids").size() != desc.Input("Embs").size()) { VLOG(3) << "The id and emb size of fused EmbEltwiseLayerNormOp " "should be same "; return false; } } if (op_type == "gelu") { if (desc.Input("X").size() != 1) { VLOG(3) << "gelu op has only 1 input, but got " << desc.Input("X").size(); return false; } if (desc.Output("Out").size() != 1) { VLOG(3) << "gelu op has only 1 output, but got " << desc.Output("Out").size(); return false; } } if (op_type == "layer_norm") { if (desc.Input("X").size() != 1) { VLOG(3) << "input of layer_norm op converter should be 1, got " << desc.Input("X").size(); return false; } if (desc.Input("Bias").size() != 1) { VLOG(3) << "Bias of layer_norm op converter should be 1, got " << desc.Input("Bias").size(); return false; } if (desc.Input("Scale").size() != 1) { VLOG(3) << "Scale of layer_norm op converter should be 1, got " << desc.Input("Scale").size(); return false; } if (desc.Output("Y").size() != 1) { VLOG(3) << "output of layer_norm op converter should be 1, got " << desc.Output("Y").size(); return false; } } if (op_type == "leaky_relu") { if (desc.Input("X").size() != 1) { VLOG(3) << "Invalid number of TRT leaky_relu op converter " "inputs. Expected 1, but received " << desc.Input("X").size(); return false; } if (desc.Output("Out").size() != 1) { VLOG(3) << "output of leaky_relu op converter should be 1, got " << desc.Output("Out").size(); return false; } } if (op_type == "pad") { const float pad_value = BOOST_GET_CONST(float, desc.GetAttr("pad_value")); if (pad_value != 0.0f) { VLOG(3) << "The pad layer of TRT only support zero."; return false; } } if (op_type == "prelu") { if (desc.Input("X").size() != 1) { VLOG(3) << "Invalid input X's size of prelu TRT converter. " "Expected 1, received " << desc.Input("X").size() << "."; return false; } if (desc.Output("Out").size() != 1) { VLOG(3) << "Invalid output Out's size of prelu TRT converter. " "Expected 1, received " << desc.Output("Out").size() << "."; return false; } } if (op_type == "roi_align") { if (!with_dynamic_shape) { VLOG(3) << "TRT roi align plugin only accept the dynamic shape, " "because that " "the roi_align will change the batch size."; return false; } } if (op_type == "shuffle_channel") { if (with_dynamic_shape) { VLOG(3) << "You are running the TRT Dynamic Shape mode, " "the shuffle_channel op does not support dynamic shape yet"; return false; } } if (op_type == "skip_layernorm") { if (!with_dynamic_shape) { VLOG(3) << "the skip_layernorm does not support static shape yet"; return false; } } if (op_type == "multihead_matmul") { if (!with_dynamic_shape) { VLOG(3) << "the multihead_matmul does not support static shape yet"; return false; } } if ((*teller)(op_type, desc, use_no_calib_int8)) return true; } return false; } OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); } } // namespace tensorrt } // namespace inference } // namespace paddle