# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import librosa import numpy as np import os import paddle import paddle.audio import scipy from scipy import signal import itertools from parameterized import parameterized def parameterize(*params): return parameterized.expand(list(itertools.product(*params))) class TestFeatures(unittest.TestCase): def setUp(self): self.initParmas() def initParmas(self): def get_wav_data(dtype: str, num_channels: int, num_frames: int): dtype_ = getattr(paddle, dtype) base = paddle.linspace(-1.0, 1.0, num_frames, dtype=dtype_) * 0.1 data = base.tile([num_channels, 1]) return data self.fmin = 0.0 self.top_db = 80.0 self.duration = 0.5 self.num_channels = 1 self.sr = 16000 self.dtype = "float32" waveform_tensor = get_wav_data(self.dtype, self.num_channels, num_frames=self.duration * self.sr) self.waveform = waveform_tensor.numpy() @parameterize([16000], ["hamming", "bohman"], [128], [128, 64], [64, 32], [0.0, 50.0]) def test_log_melspect(self, sr: int, window_str: str, n_fft: int, hop_length: int, n_mels: int, fmin: float): if len(self.waveform.shape) == 2: # (C, T) self.waveform = self.waveform.squeeze( 0) # 1D input for librosa.feature.melspectrogram # librosa: feature_librosa = librosa.feature.melspectrogram(y=self.waveform, sr=sr, n_fft=n_fft, hop_length=hop_length, window=window_str, n_mels=n_mels, center=True, fmin=fmin, pad_mode='reflect') feature_librosa = librosa.power_to_db(feature_librosa, top_db=None) x = paddle.to_tensor(self.waveform, dtype=paddle.float64).unsqueeze( 0) # Add batch dim. feature_extractor = paddle.audio.features.LogMelSpectrogram( sr=sr, n_fft=n_fft, hop_length=hop_length, window=window_str, center=True, n_mels=n_mels, f_min=fmin, top_db=None, dtype=x.dtype) feature_layer = feature_extractor(x).squeeze(0).numpy() np.testing.assert_array_almost_equal(feature_librosa, feature_layer, decimal=2) # relative difference np.testing.assert_allclose(feature_librosa, feature_layer, rtol=1e-4) @parameterize([16000], [256, 128], [40, 64], [64, 128], ['float32', 'float64']) def test_mfcc(self, sr: int, n_fft: int, n_mfcc: int, n_mels: int, dtype: str): if paddle.version.cuda() != 'False': if float(paddle.version.cuda()) >= 11.0: return if len(self.waveform.shape) == 2: # (C, T) self.waveform = self.waveform.squeeze( 0) # 1D input for librosa.feature.melspectrogram # librosa: np_dtype = getattr(np, dtype) feature_librosa = librosa.feature.mfcc(y=self.waveform, sr=sr, S=None, n_mfcc=n_mfcc, dct_type=2, lifter=0, n_fft=n_fft, hop_length=64, n_mels=n_mels, fmin=50.0, dtype=np_dtype) # paddlespeech.audio.features.layer x = paddle.to_tensor(self.waveform, dtype=dtype).unsqueeze(0) # Add batch dim. feature_extractor = paddle.audio.features.MFCC(sr=sr, n_mfcc=n_mfcc, n_fft=n_fft, hop_length=64, n_mels=n_mels, top_db=self.top_db, dtype=x.dtype) feature_layer = feature_extractor(x).squeeze(0).numpy() np.testing.assert_array_almost_equal(feature_librosa, feature_layer, decimal=3) np.testing.assert_allclose(feature_librosa, feature_layer, rtol=1e-1) # split mffcc: logmel-->dct --> mfcc, which prove the difference. # the dct module is correct. feature_extractor = paddle.audio.features.LogMelSpectrogram( sr=sr, n_fft=n_fft, hop_length=64, n_mels=n_mels, center=True, pad_mode='reflect', top_db=self.top_db, dtype=x.dtype) feature_layer_logmel = feature_extractor(x).squeeze(0).numpy() feature_layer_mfcc = scipy.fftpack.dct(feature_layer_logmel, axis=0, type=2, norm="ortho")[:n_mfcc] np.testing.assert_array_almost_equal(feature_layer_mfcc, feature_librosa, decimal=3) np.testing.assert_allclose(feature_layer_mfcc, feature_librosa, rtol=1e-1) if __name__ == '__main__': unittest.main()