/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/inference/engine.h" #include "paddle/fluid/inference/tensorrt/helper.h" #include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h" #include "paddle/fluid/inference/utils/singleton.h" namespace paddle { namespace inference { namespace tensorrt { /* * TensorRT Engine. * * There are two alternative ways to use it, one is to build from a paddle * protobuf model, another way is to manully construct the network. */ class TensorRTEngine : public EngineBase { public: // Weight is model parameter. class Weight { public: Weight() = default; Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) { w_.type = dtype; w_.values = value; w_.count = num_elem; } const nvinfer1::Weights& get() { return w_; } std::vector dims; private: nvinfer1::Weights w_; }; TensorRTEngine(int max_batch, int max_workspace, cudaStream_t* stream = nullptr, int device = 0, nvinfer1::ILogger& logger = NaiveLogger::Global()) : max_batch_(max_batch), max_workspace_(max_workspace), stream_(stream ? stream : &default_stream_), logger_(logger), device_(device) { freshDeviceId(); cudaStreamCreate(stream_); } virtual ~TensorRTEngine(); // TODO(Superjomn) implement it later when graph segmentation is supported. void Build(const DescType& paddle_model) override; void Execute(int batch_size) override; // Initialize the inference network, so that TensorRT layers can add to this // network. void InitNetwork() { infer_builder_.reset(createInferBuilder(&logger_)); infer_network_.reset(infer_builder_->createNetwork()); } // After finishing adding ops, freeze this network and creates the executation // environment. void FreezeNetwork(); // Add an input and set its name, data type and dimention. nvinfer1::ITensor* DeclareInput(const std::string& name, nvinfer1::DataType dtype, const nvinfer1::Dims& dim); // Set the offset-th output from a layer as the network's output, and set its // name. void DeclareOutput(const nvinfer1::ILayer* layer, int offset, const std::string& name); // Set the itensor_map_[name] as the network's output, and set its name. void DeclareOutput(const std::string& name); // Check if the ITensor has been declared bool HasDeclared(const std::string& name); // GPU memory address for an ITensor with specific name. One can operate on // these memory directly for acceleration, for example, output the converted // data directly to the buffer to save data copy overhead. // NOTE this should be used after calling `FreezeNetwork`. Buffer& buffer(const std::string& name) override; cudaStream_t* stream() { return stream_; } // Fill an input from CPU memory with name and size. void SetInputFromCPU(const std::string& name, const void* data, size_t size); // TODO(Superjomn) is this method necessary given that buffer(xxx) can be // accessed directly. Fill an input from GPU memory with name and size. void SetInputFromGPU(const std::string& name, const void* data, size_t size); // Get an output called name, the output of tensorrt is in GPU, so this method // Return the output's GPU memory address without copy. void* GetOutputInGPU(const std::string& name); // Copy data into dst inside the GPU device. void GetOutputInGPU(const std::string& name, void* dst, size_t max_size); // LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU // to CPU. void GetOutputInCPU(const std::string& name, void* dst, size_t max_size); // Fill an ITensor into map itensor_map_. void SetITensor(const std::string& name, nvinfer1::ITensor* tensor); // Get an ITensor called name. nvinfer1::ITensor* GetITensor(const std::string& name); nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); } nvinfer1::INetworkDefinition* network() { return infer_network_.get(); } void SetRuntimeBatch(size_t batch_size); int GetRuntimeBatch(); int GetDevice() { return device_; } nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs, int nbInputs, PluginTensorRT*); // A pointer to CPU memory is needed of the TRT weight. // Before TRT runs, fluid loads weight into GPU storage. // so we need to copy the weights from GPU to CPU in our op converter. // We use a map to store these weights for the weight memory is not released // in advance, which affecting the construction of TRT Op. std::unordered_map> weight_map; // TODO(NHZLX) // In the normal case, the paddle-trt exists bug when runing the googlenet. // When there are more than two convolutions of 1 * 1 with the same input, the // paddle-tensorrt will do the merging optimization, which fuse those conv // into // one conv, and then trigger bug. So, We should use strategy to avoid this // optimization for the time being. This bug will be fixed in the future. std::unordered_map itensor_quote_num; private: // the max batch size int max_batch_; // the runtime batch size static int runtime_batch_; // the max memory size the engine uses int max_workspace_; // batch size of the current data, will be updated each Executation. int batch_size_{-1}; cudaStream_t* stream_; // If stream_ is not set from outside, hold its own stream. cudaStream_t default_stream_; nvinfer1::ILogger& logger_; std::vector buffers_; // max data size for the buffers. std::unordered_map buffer_sizes_; std::unordered_map itensor_map_; // The specific GPU id that the TensorRTEngine bounded to. int device_; std::vector> owned_plugin_; // TensorRT related internal members template struct Destroyer { void operator()(T* x) { if (x) { x->destroy(); } } }; template using infer_ptr = std::unique_ptr>; infer_ptr infer_builder_; infer_ptr infer_network_; infer_ptr infer_engine_; infer_ptr infer_context_; // Each ICudaEngine object is bound to a specific GPU when it is instantiated, // ensure that the thread is associated with the correct device by calling // freshDeviceId(). void freshDeviceId(); }; // class TensorRTEngine // Add an layer__ into engine__ with args ARGS. // For example: // TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias) // // Reference // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network // // will add a fully connected layer into the engine. // TensorRT has too many layers, so that is not wise to add member functions for // them, and an macro like this is more extensible when underlying TensorRT // library add new layer supports. #define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \ engine__->network()->add##layer__(ARGS); /* * Helper to control the TensorRT engine's creation and deletion. */ class TRT_EngineManager { public: bool HasEngine(const std::string& name) const { return engines_.count(name) != 0; } // Get an engine called `name`. TensorRTEngine* Get(const std::string& name) const { return engines_.at(name).get(); } // Create or get an engine called `name` TensorRTEngine* Create(int max_batch, int max_workspace, cudaStream_t* stream, const std::string& name, int gpu_device = 0) { auto* p = new TensorRTEngine(max_batch, max_workspace, stream, gpu_device); engines_[name].reset(p); return p; } void DeleteALl() { for (auto& item : engines_) { item.second.reset(nullptr); } } private: std::unordered_map> engines_; }; } // namespace tensorrt } // namespace inference } // namespace paddle