/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/pten/kernels/math_kernel.h" #include "paddle/pten/backends/gpu/gpu_context.h" #include "paddle/pten/kernels/funcs/elementwise_functor.h" #include "paddle/pten/kernels/gpu/reduce.h" #include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise.h" #ifdef __NVCC__ #include "cub/cub.cuh" #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include "paddle/fluid/platform/complex.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/float16.h" #include "paddle/pten/api/lib/utils/tensor_utils.h" #include "paddle/pten/core/convert_utils.h" #include "paddle/pten/core/kernel_registry.h" namespace kps = paddle::operators::kernel_primitives; namespace pten { #define DEFINE_CUDA_ELEMENTWISE_OP(name) \ template \ void name##Kernel(const Context& dev_ctx, \ const DenseTensor& x, \ const DenseTensor& y, \ int axis, \ DenseTensor* out) { \ std::vector inputs; \ std::vector outputs; \ inputs.emplace_back(&x); \ inputs.emplace_back(&y); \ outputs.emplace_back(out); \ out->mutable_data(); \ LaunchElementwiseCudaKernel( \ dev_ctx, inputs, &outputs, axis, funcs::name##Functor()); \ } /** * Util Functors */ template struct DivideFunctor { HOSTDEVICE explicit inline DivideFunctor(int n) : n_inv(static_cast(1.0 / n)) {} HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; } private: T n_inv; }; /** * Kernels */ template void MeanKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DenseTensor* out) { auto out_dtype = x.dtype(); pten::Reduce( dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out); } // Create the definition of Add DEFINE_CUDA_ELEMENTWISE_OP(Add) // Create the definition of Subtract DEFINE_CUDA_ELEMENTWISE_OP(Subtract) // Create the definition of Multiply DEFINE_CUDA_ELEMENTWISE_OP(Multiply) // Create the definition of Divide DEFINE_CUDA_ELEMENTWISE_OP(Divide) template void SumKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DataType out_dtype, DenseTensor* out) { pten::Reduce( dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out); } } // namespace pten using float16 = paddle::platform::float16; using complex64 = ::paddle::platform::complex; using complex128 = ::paddle::platform::complex; PT_REGISTER_CTX_KERNEL( mean, GPU, ALL_LAYOUT, pten::MeanKernel, float, double, bool, float16) {} PT_REGISTER_CTX_KERNEL(add, GPU, ALL_LAYOUT, pten::AddKernel, float, double, int, int64_t, float16, complex64, complex128) {} PT_REGISTER_CTX_KERNEL(subtract, GPU, ALL_LAYOUT, pten::SubtractKernel, float, double, int, int64_t, float16, complex64, complex128) {} PT_REGISTER_CTX_KERNEL(divide, GPU, ALL_LAYOUT, pten::DivideKernel, float, double, int, int64_t, float16, complex64, complex128) {} PT_REGISTER_CTX_KERNEL(multiply, GPU, ALL_LAYOUT, pten::MultiplyKernel, float, double, int, int64_t, bool, float16, complex64, complex128) {} PT_REGISTER_CTX_KERNEL(sum, GPU, ALL_LAYOUT, pten::SumKernel, bool, float, double, float16, int, int64_t, complex64, complex128) { kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED); }