# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid as fluid import paddle.tensor as tensor class TrilTriuOpDefaultTest(OpTest): """ the base class of other op testcases """ def setUp(self): self.initTestCase() self.real_np_op = getattr(np, self.real_op_type) self.op_type = "tril_triu" self.inputs = {'X': self.X} self.attrs = { 'diagonal': self.diagonal, 'lower': True if self.real_op_type == 'tril' else False, } self.outputs = { 'Out': self.real_np_op(self.X, self.diagonal) if self.diagonal else self.real_np_op(self.X) } def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X'], 'Out') def initTestCase(self): self.real_op_type = np.random.choice(['triu', 'tril']) self.diagonal = None self.X = np.arange(1, 101, dtype="float64").reshape([10, -1]) def case_generator(op_type, Xshape, diagonal, expected): """ Generate testcases with the params shape of X, diagonal and op_type. If arg`expercted` is 'success', it will register an Optest case and expect to pass. Otherwise, it will register an API case and check the expect failure. """ cls_name = "{0}_{1}_shape_{2}_diag_{3}".format(expected, op_type, Xshape, diagonal) errmsg = { "diagonal: TypeError": "diagonal in {} must be a python Int".format(op_type), "input: ValueError": "input shape in {} must be at least 2-D".format(op_type), } class FailureCase(unittest.TestCase): def test_failure(self): data = fluid.data(shape=Xshape, dtype='float64', name=cls_name) with self.assertRaisesRegexp( eval(expected.split(':')[-1]), errmsg[expected]): getattr(tensor, op_type)(input=data, diagonal=diagonal) class SuccessCase(TrilTriuOpDefaultTest): def initTestCase(self): self.real_op_type = op_type self.diagonal = diagonal self.X = np.random.random(Xshape).astype("float64") CLASS = locals()['SuccessCase' if expected == "success" else 'FailureCase'] CLASS.__name__ = cls_name globals()[cls_name] = CLASS ### NOTE: meaningful diagonal is [1 - min(H, W), max(H, W) -1] ### test the diagonal just at the border, upper/lower the border, ### negative/positive integer within range and a zero cases = { 'success': { (2, 2, 3, 4, 5): [-100, -3, -1, 0, 2, 4, 100], # normal shape (10, 10, 1, 1): [-100, -1, 0, 1, 100], # small size of matrix }, 'diagonal: TypeError': { (20, 20): [ '2020', [20], { 20: 20 }, (20, 20), 20.20, ], # str, list, dict, tuple, float }, 'input: ValueError': { (2020, ): [None], }, } for _op_type in ['tril', 'triu']: for _expected, _params in cases.items(): for _Xshape, _diaglist in _params.items(): list( map(lambda _diagonal: case_generator(_op_type, _Xshape, _diagonal, _expected), _diaglist)) class TestTrilTriuOpAPI(unittest.TestCase): """ test case by using API and has -1 dimension """ def test_api(self): data = np.random.random([1, 9, 9, 4]).astype('float32') x = fluid.data(shape=[1, 9, -1, 4], dtype='float32', name='x') tril_out, triu_out = tensor.tril(x), tensor.triu(x) place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() exe = fluid.Executor(place) tril_out, triu_out = exe.run( fluid.default_main_program(), feed={"x": data}, fetch_list=[tril_out, triu_out], ) self.assertTrue(np.allclose(tril_out, np.tril(data))) self.assertTrue(np.allclose(triu_out, np.triu(data))) def test_api_with_dygraph(self): with fluid.dygraph.guard(): data = np.random.random([1, 9, 9, 4]).astype('float32') x = fluid.dygraph.to_variable(data) tril_out, triu_out = tensor.tril(x).numpy(), tensor.triu(x).numpy() self.assertTrue(np.allclose(tril_out, np.tril(data))) self.assertTrue(np.allclose(triu_out, np.triu(data))) if __name__ == '__main__': unittest.main()