/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/float16.h" #define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/platform/eigen_ext.h" #include "paddle/fluid/platform/enforce.h" #define ARITHMETIC_KERNEL(op_type, sign) \ __global__ void op_type(const half *in1, const half *in2, half *out) { \ out[0] = in1[0] sign in2[0]; \ } #define COMPOUND_KERNEL(op_type, sign) \ __global__ void op_type(half *in1, const half *in2) { in1[0] sign in2[0]; } #define COMPARISON_KERNEL(op_type, sign) \ __global__ void op_type(const half *in1, const half *in2, bool *out) { \ out[0] = in1[0] sign in2[0]; \ } #ifdef PADDLE_WITH_HIP #define ARITHMETIC_KERNEL_LAUNCH(op_type) \ void Test##op_type(float v_in1, float v_in2, float v_out) { \ LOG(INFO) << "Test " << #op_type << " on GPU!"; \ half *in1, *in2, *out; \ half *d_in1, *d_in2, *d_out; \ int size = sizeof(half); \ hipMalloc(reinterpret_cast(&d_in1), size); \ hipMalloc(reinterpret_cast(&d_in2), size); \ hipMalloc(reinterpret_cast(&d_out), size); \ in1 = reinterpret_cast(malloc(size)); \ in2 = reinterpret_cast(malloc(size)); \ out = reinterpret_cast(malloc(size)); \ in1[0] = float16(v_in1).to_half(); \ in2[0] = float16(v_in2).to_half(); \ hipMemcpy(d_in1, in1, size, hipMemcpyHostToDevice); \ hipMemcpy(d_in2, in2, size, hipMemcpyHostToDevice); \ hipLaunchKernelGGL(op_type, dim3(1), dim3(1), 0, 0, d_in1, d_in2, d_out); \ hipMemcpy(out, d_out, size, hipMemcpyDeviceToHost); \ EXPECT_EQ(static_cast(float16(out[0])), v_out); \ free(in1); \ free(in2); \ free(out); \ hipFree(d_in1); \ hipFree(d_in2); \ hipFree(d_out); \ } #define COMPOUND_KERNEL_LAUNCH(op_type) \ void Test##op_type(float v_in1, float v_in2, float v_out) { \ LOG(INFO) << "Test " << #op_type << " on GPU!"; \ half *in1, *in2; \ half *d_in1, *d_in2; \ int size = sizeof(half); \ hipMalloc(reinterpret_cast(&d_in1), size); \ hipMalloc(reinterpret_cast(&d_in2), size); \ in1 = reinterpret_cast(malloc(size)); \ in2 = reinterpret_cast(malloc(size)); \ in1[0] = float16(v_in1).to_half(); \ in2[0] = float16(v_in2).to_half(); \ hipMemcpy(d_in1, in1, size, hipMemcpyHostToDevice); \ hipMemcpy(d_in2, in2, size, hipMemcpyHostToDevice); \ hipLaunchKernelGGL(op_type, dim3(1), dim3(1), 0, 0, d_in1, d_in2); \ hipMemcpy(in1, d_in1, size, hipMemcpyDeviceToHost); \ EXPECT_EQ(static_cast(float16(in1[0])), v_out); \ free(in1); \ free(in2); \ hipFree(d_in1); \ hipFree(d_in2); \ } #define COMPARISON_KERNEL_LAUNCH(op_type) \ void Test##op_type(float v_in1, float v_in2, bool v_out) { \ LOG(INFO) << "Test " << #op_type << " on GPU!"; \ half *in1, *in2; \ half *d_in1, *d_in2; \ bool *out, *d_out; \ int size = sizeof(half); \ hipMalloc(reinterpret_cast(&d_in1), size); \ hipMalloc(reinterpret_cast(&d_in2), size); \ hipMalloc(reinterpret_cast(&d_out), 1); \ in1 = reinterpret_cast(malloc(size)); \ in2 = reinterpret_cast(malloc(size)); \ out = reinterpret_cast(malloc(1)); \ in1[0] = float16(v_in1).to_half(); \ in2[0] = float16(v_in2).to_half(); \ hipMemcpy(d_in1, in1, size, hipMemcpyHostToDevice); \ hipMemcpy(d_in2, in2, size, hipMemcpyHostToDevice); \ hipLaunchKernelGGL(op_type, dim3(1), dim3(1), 0, 0, d_in1, d_in2, d_out); \ hipMemcpy(out, d_out, 1, hipMemcpyDeviceToHost); \ EXPECT_EQ(out[0], v_out); \ free(in1); \ free(in2); \ free(out); \ hipFree(d_in1); \ hipFree(d_in2); \ hipFree(d_out); \ } #else #define ARITHMETIC_KERNEL_LAUNCH(op_type) \ void Test##op_type(float v_in1, float v_in2, float v_out) { \ LOG(INFO) << "Test " << #op_type << " on GPU!"; \ half *in1, *in2, *out; \ half *d_in1, *d_in2, *d_out; \ int size = sizeof(half); \ cudaMalloc(reinterpret_cast(&d_in1), size); \ cudaMalloc(reinterpret_cast(&d_in2), size); \ cudaMalloc(reinterpret_cast(&d_out), size); \ in1 = reinterpret_cast(malloc(size)); \ in2 = reinterpret_cast(malloc(size)); \ out = reinterpret_cast(malloc(size)); \ in1[0] = float16(v_in1).to_half(); \ in2[0] = float16(v_in2).to_half(); \ cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \ cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \ op_type<<<1, 1>>>(d_in1, d_in2, d_out); \ cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); \ EXPECT_EQ(static_cast(float16(out[0])), v_out); \ free(in1); \ free(in2); \ free(out); \ cudaFree(d_in1); \ cudaFree(d_in2); \ cudaFree(d_out); \ } #define COMPOUND_KERNEL_LAUNCH(op_type) \ void Test##op_type(float v_in1, float v_in2, float v_out) { \ LOG(INFO) << "Test " << #op_type << " on GPU!"; \ half *in1, *in2; \ half *d_in1, *d_in2; \ int size = sizeof(half); \ cudaMalloc(reinterpret_cast(&d_in1), size); \ cudaMalloc(reinterpret_cast(&d_in2), size); \ in1 = reinterpret_cast(malloc(size)); \ in2 = reinterpret_cast(malloc(size)); \ in1[0] = float16(v_in1).to_half(); \ in2[0] = float16(v_in2).to_half(); \ cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \ cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \ op_type<<<1, 1>>>(d_in1, d_in2); \ cudaMemcpy(in1, d_in1, size, cudaMemcpyDeviceToHost); \ EXPECT_EQ(static_cast(float16(in1[0])), v_out); \ free(in1); \ free(in2); \ cudaFree(d_in1); \ cudaFree(d_in2); \ } #define COMPARISON_KERNEL_LAUNCH(op_type) \ void Test##op_type(float v_in1, float v_in2, bool v_out) { \ LOG(INFO) << "Test " << #op_type << " on GPU!"; \ half *in1, *in2; \ half *d_in1, *d_in2; \ bool *out, *d_out; \ int size = sizeof(half); \ cudaMalloc(reinterpret_cast(&d_in1), size); \ cudaMalloc(reinterpret_cast(&d_in2), size); \ cudaMalloc(reinterpret_cast(&d_out), 1); \ in1 = reinterpret_cast(malloc(size)); \ in2 = reinterpret_cast(malloc(size)); \ out = reinterpret_cast(malloc(1)); \ in1[0] = float16(v_in1).to_half(); \ in2[0] = float16(v_in2).to_half(); \ cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \ cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \ op_type<<<1, 1>>>(d_in1, d_in2, d_out); \ cudaMemcpy(out, d_out, 1, cudaMemcpyDeviceToHost); \ EXPECT_EQ(out[0], v_out); \ free(in1); \ free(in2); \ free(out); \ cudaFree(d_in1); \ cudaFree(d_in2); \ cudaFree(d_out); \ } #endif #ifdef PADDLE_CUDA_FP16 namespace paddle { namespace platform { #if defined(PADDLE_WITH_HIP) ARITHMETIC_KERNEL(Add, +) ARITHMETIC_KERNEL(Sub, -) ARITHMETIC_KERNEL(Mul, *) ARITHMETIC_KERNEL(Div, /) ARITHMETIC_KERNEL_LAUNCH(Add) ARITHMETIC_KERNEL_LAUNCH(Sub) ARITHMETIC_KERNEL_LAUNCH(Mul) ARITHMETIC_KERNEL_LAUNCH(Div) // Negative sign kernel __global__ void Neg(half *in) { in[0] = -in[0]; } void TestNeg(float v_in, float v_out) { LOG(INFO) << "Test Neg on GPU!"; half *in, *d_in; int size = sizeof(half); #ifdef PADDLE_WITH_HIP hipMalloc(reinterpret_cast(&d_in), size); #else cudaMalloc(reinterpret_cast(&d_in), size); #endif in = reinterpret_cast(malloc(size)); in[0] = float16(v_in).to_half(); #ifdef PADDLE_WITH_HIP hipMemcpy(d_in, in, size, hipMemcpyHostToDevice); #else cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice); #endif Neg<<<1, 1>>>(d_in); #ifdef PADDLE_WITH_HIP hipMemcpy(in, d_in, size, hipMemcpyDeviceToHost); #else cudaMemcpy(in, d_in, size, cudaMemcpyDeviceToHost); #endif EXPECT_EQ(static_cast(float16(in[0])), v_out); free(in); #ifdef PADDLE_WITH_HIP hipFree(d_in); #else cudaFree(d_in); #endif } COMPOUND_KERNEL(AddAssign, +=) COMPOUND_KERNEL(SubAssign, -=) COMPOUND_KERNEL(MulAssign, *=) COMPOUND_KERNEL(DivAssign, /=) COMPOUND_KERNEL_LAUNCH(AddAssign) COMPOUND_KERNEL_LAUNCH(SubAssign) COMPOUND_KERNEL_LAUNCH(MulAssign) COMPOUND_KERNEL_LAUNCH(DivAssign) COMPARISON_KERNEL(Equal, ==) COMPARISON_KERNEL(NotEqual, !=) COMPARISON_KERNEL(Less, <) COMPARISON_KERNEL(LessEqual, <=) COMPARISON_KERNEL(Greater, >) COMPARISON_KERNEL(GreaterEqual, >=) COMPARISON_KERNEL_LAUNCH(Equal) COMPARISON_KERNEL_LAUNCH(NotEqual) COMPARISON_KERNEL_LAUNCH(Less) COMPARISON_KERNEL_LAUNCH(LessEqual) COMPARISON_KERNEL_LAUNCH(Greater) COMPARISON_KERNEL_LAUNCH(GreaterEqual) TEST(float16, arithmetic_on_gpu) { TestAdd(1, 2, 3); TestSub(2, 1, 1); TestMul(2, 3, 6); TestDiv(6, 2, 3); TestNeg(1, -1); } TEST(float16, compound_on_gpu) { TestAddAssign(1, 2, 3); TestSubAssign(2, 1, 1); TestMulAssign(2, 3, 6); TestDivAssign(6, 2, 3); } TEST(float16, comparision_on_gpu) { TestEqual(1, 1, true); TestEqual(1, 2, false); TestNotEqual(2, 3, true); TestNotEqual(2, 2, false); TestLess(3, 4, true); TestLess(3, 3, false); TestLessEqual(3, 3, true); TestLessEqual(3, 2, false); TestGreater(4, 3, true); TestGreater(4, 4, false); TestGreaterEqual(4, 4, true); TestGreaterEqual(4, 5, false); } #endif // CUDA_VERSION TEST(float16, conversion_on_gpu) { // Explicit conversion to and from cuda half EXPECT_EQ(float16(float16(1.0f).to_half()).x, 0x3c00); EXPECT_EQ(float16(float16(0.5f).to_half()).x, 0x3800); EXPECT_EQ(float16(float16(0.33333f).to_half()).x, 0x3555); EXPECT_EQ(float16(float16(0.0f).to_half()).x, 0x0000); EXPECT_EQ(float16(float16(-0.0f).to_half()).x, 0x8000); EXPECT_EQ(float16(float16(65504.0f).to_half()).x, 0x7bff); EXPECT_EQ(float16(float16(65536.0f).to_half()).x, 0x7c00); // Assignment operator float16 v_assign; v_assign = float16(1.0f).to_half(); EXPECT_EQ(v_assign.x, 0x3c00); } TEST(float16, lod_tensor_on_gpu) { framework::LoDTensor src_tensor; framework::LoDTensor gpu_tensor; framework::LoDTensor dst_tensor; float16 *src_ptr = src_tensor.mutable_data( framework::make_ddim({2, 2}), CPUPlace()); float16 arr[4] = {float16(1.0f), float16(0.5f), float16(0.33333f), float16(0.0f)}; memcpy(src_ptr, arr, 4 * sizeof(float16)); // CPU LoDTensor to GPU LoDTensor CUDAPlace gpu_place(0); CUDADeviceContext gpu_ctx(gpu_place); framework::TensorCopy(src_tensor, gpu_place, gpu_ctx, &gpu_tensor); // GPU LoDTensor to CPU LoDTensor framework::TensorCopy(gpu_tensor, CPUPlace(), gpu_ctx, &dst_tensor); // Sync before comparing LoDTensors gpu_ctx.Wait(); const float16 *dst_ptr = dst_tensor.data(); ASSERT_NE(src_ptr, dst_ptr); for (size_t i = 0; i < 4; ++i) { EXPECT_EQ(src_ptr[i].x, dst_ptr[i].x); } } template struct Functor { bool operator()(const T &val) { return std::type_index(typeid(T)) == std::type_index(typeid(platform::float16)); } }; TEST(float16, typeid) { // the framework heavily used typeid hash Functor functor; float16 a = float16(.0f); Functor functor2; int b(0); // compile time assert PADDLE_ENFORCE_EQ( functor(a), true, platform::errors::Unavailable("The float16 support in GPU failed.")); PADDLE_ENFORCE_EQ( functor2(b), false, platform::errors::Unavailable("The float16 support in GPU failed.")); } // GPU test TEST(float16, isinf) { float16 a; a.x = 0x7c00; float16 b = float16(INFINITY); // underflow to 0 float16 native_a(5e-40f); EXPECT_EQ(std::isinf(a), true); EXPECT_EQ(std::isinf(b), true); #ifndef _WIN32 // overflow to inf float16 native_b(5e40f); EXPECT_EQ(std::isinf(native_b), true); #endif EXPECT_EQ(native_a, float16(0)); } TEST(float16, isnan) { float16 a; a.x = 0x7fff; float16 b = float16(NAN); float16 c = float16(5e40); // inf * +-0 will get a nan float16 d = c * float16(0); EXPECT_EQ(std::isnan(a), true); EXPECT_EQ(std::isnan(b), true); EXPECT_EQ(std::isnan(d), true); } TEST(float16, cast) { float16 a; a.x = 0x0070; auto b = a; { // change semantic, keep the same value float16 c = reinterpret_cast(reinterpret_cast(b)); EXPECT_EQ(b, c); } { // use uint32 low 16 bit store float16 uint32_t c = reinterpret_cast(b); float16 d; d.x = c; EXPECT_EQ(b, d); } } } // namespace platform } // namespace paddle #endif // PADDLE_CUDA_FP16