- backward_api : abs_grad forward : abs (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : abs_grad data_transform: skip_transform : out_grad - backward_api : acos_grad forward : acos (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : acos_grad - backward_api : acosh_grad forward : acosh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : acosh_grad - backward_api : add_grad forward : add (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : add_grad no_need_buffer : x, y - backward_api : add_n_grad forward : add_n (Tensor[] x) -> Tensor(out) args : (Tensor[] x, Tensor out_grad) output : Tensor[](x_grad) invoke : add_n_grad_impl(x, out_grad) no_need_buffer : x - backward_api : addmm_grad forward : scatter (Tensor input, Tensor x, Tensor y, float alpha, float beta) -> Tensor(out) args : (Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha, float beta) output : Tensor(input_grad), Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [input, x, y] kernel : func : addmm_grad - backward_api : argsort_grad forward : argsort (Tensor x, int axis, bool descending) -> Tensor(out), Tensor(indices) args : (Tensor indices, Tensor x, Tensor out_grad, int axis, bool descending) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : argsort_grad - backward_api : asin_grad forward : asin (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : asin_grad - backward_api : asinh_grad forward : asinh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : asinh_grad - backward_api : atan2_grad forward : cross (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : atan2_grad - backward_api : atan_grad forward : atan (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : atan_grad - backward_api : atanh_grad forward : atanh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : atanh_grad - backward_api : batch_norm_grad forward : batch_norm (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space) args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, bias] kernel : func : batch_norm_grad data_type : out_grad optional : mean_out, variance_out, reserve_space - backward_api : bce_loss_grad forward : bce_loss (Tensor input, Tensor label) -> Tensor(out) args : (Tensor input, Tensor label, Tensor out_grad) output : Tensor(input_grad) infer_meta : func : UnchangedInferMeta param : [input] kernel : func : bce_loss_grad - backward_api : brelu_grad forward : brelu (Tensor x, float t_min, float t_max) -> Tensor(out) args : (Tensor x, Tensor out_grad, float t_min, float t_max) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : brelu_grad - backward_api : cast_grad forward : cast (Tensor x, DataType out_dtype) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : cast_grad data_type : out_grad - backward_api : ceil_grad forward : ceil(Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out_grad] kernel : func : ceil_grad - backward_api : cholesky_grad forward : cholesky (Tensor x, bool upper) -> Tensor(out) args : (Tensor out, Tensor out_grad, bool upper) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : cholesky_grad - backward_api : cholesky_solve_grad forward : cholesky (Tensor x, Tensor y, bool upper) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : cholesky_solve_grad - backward_api : clip_grad forward : clip (Tensor x, Scalar min, Scalar max) -> Tensor(out) args : (Tensor x, Tensor out_grad, Scalar min = 0., Scalar max = 0.) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : clip_grad - backward_api : concat_grad forward : concat (Tensor[] x, Scalar axis) -> Tensor(out) args : (Tensor[] x, Tensor out_grad, Scalar axis = 0) output : Tensor[](x_grad) invoke : concat_grad_impl(x, out_grad, axis) - backward_api : conv2d_transpose_grad forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : ConvTransposeGradInferMeta kernel : func : conv2d_transpose_grad - backward_api : conv3d_transpose_grad forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : ConvTransposeGradInferMeta kernel : func : conv3d_transpose_grad - backward_api : cos_grad forward : cos (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : cos_grad - backward_api : cosh_grad forward : cosh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : cosh_grad - backward_api : cross_entropy_with_softmax_grad forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss) args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) output : Tensor(input_grad) infer_meta : func : CrossEntropyWithSoftmaxGradInferMeta kernel : func : cross_entropy_with_softmax_grad data_type : softmax - backward_api : cross_grad forward : cross (Tensor x, Tensor y, int axis = 9) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : cross_grad - backward_api : cumprod_grad forward : cumprod (Tensor x, int dim) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int dim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : cumprod_grad # - backward_api : gumbel_softmax_grad # forward : gumbel_softmax (Tensor x, float temperature, bool hard, int axis) -> Tensor(out) # args : (Tensor out, Tensor out_grad, int axis) # output : Tensor(x_grad) # infer_meta : # func : GumbelSoftmaxGradInferMeta # param : [out, out_grad, axis] # kernel : # func : gumbel_softmax_grad - backward_api : depthwise_conv2d_transpose_grad forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : ConvTransposeGradInferMeta kernel : func : depthwise_conv2d_transpose_grad - backward_api : diagonal_grad forward : diagonal (Tensor x, int offset, int axis1, int axis2) -> Tensor(out) args : (Tensor x, Tensor out_grad, int offset = 0, int axis1 = 0, int axis2 = 1) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : diagonal_grad - backward_api : digamma_grad forward : digamma (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : digamma_grad - backward_api : dist_grad forward : dist (Tensor x, Tensor y, float p) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, float p) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : dist_grad - backward_api : divide_grad forward : divide (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : divide_grad - backward_api : dropout_grad forward : dropout (Tensor x, Tensor seed_tensor, float p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask) args : (Tensor mask, Tensor out_grad, float p, bool is_test, str mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : dropout_grad optional : seed_tensor - backward_api : eigh_grad forward : eigh (Tensor x, str uplo) -> Tensor(out_w), Tensor(out_v) args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_v] kernel : func : eigh_grad - backward_api : elementwise_pow_grad forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : elementwise_pow_grad - backward_api : elu_grad forward : elu (Tensor x, float alpha) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, float alpha) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : elu_grad - backward_api : erf_grad forward : erf (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : erf_grad data_type : out_grad - backward_api : erfinv_grad forward : erf (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : erfinv_grad - backward_api : expand_as_grad forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] target_shape) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : expand_as_grad - backward_api : expm1_grad forward : expm1 (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : expm1_grad - backward_api : flatten_grad forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape) args : (Tensor xshape, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param : [xshape] kernel : func : flatten_grad data_type: out_grad backend: out_grad layout: out_grad - backward_api : floor_grad forward : floor(Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out_grad] kernel : func : floor_grad - backward_api : fmax_grad forward : fmax(Tensor x, Tensor y, int axis) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : fmax_grad - backward_api : fmin_grad forward : fmin(Tensor x, Tensor y, int axis) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : fmin_grad - backward_api : frobenius_norm_grad forward : frobenius_norm(Tensor x, int64_t[] axis, bool keep_dim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keep_dim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : frobenius_norm_grad - backward_api : gather_grad forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : data_type: x func : gather_grad - backward_api : gather_nd_grad forward : gather_nd (Tensor x, Tensor index) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : gather_nd_grad - backward_api : gelu_grad forward : gelu(Tensor x, bool approximate) -> Tensor(out) args : (Tensor x, Tensor out_grad, bool approximate) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : gelu_grad - backward_api : hard_shrink_grad forward : hard_shrink (Tensor x, float threshold) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : hard_shrink_grad - backward_api : hard_sigmoid_grad forward : hard_sigmoid (Tensor x, float slope, float offset) -> Tensor(out) args : (Tensor out, Tensor out_grad, float slope, float offset) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : hard_sigmoid_grad - backward_api : index_sample_grad forward : index_sample (Tensor x, Tensor index) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : index_sample_grad data_type : out_grad - backward_api : index_select_grad forward : index_select(Tensor x, Tensor index, int dim) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad, int dim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : index_select_grad data_type : x - backward_api : kldiv_loss_grad forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out) args : (Tensor x, Tensor label, Tensor out_grad, str reduction) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : kldiv_loss_grad - backward_api : kthvalue_grad forward : kthvalue(Tensor x, int k, int axis, bool keepdim) -> Tensor(out), Tensor(indices) args : (Tensor x, Tensor indices, Tensor out_grad, int k, int axis, bool keepdim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : kthvalue_grad - backward_api : label_smooth_grad forward : label_smooth (Tensor label, Tensor prior_dist, float epsilon) -> Tensor(out) args : (Tensor out_grad, float epsilon) output : Tensor(label_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : label_smooth_grad optional : prior_dist - backward_api : leaky_relu_grad forward : leaky_relu (Tensor x, float alpha) -> Tensor(out) args : (Tensor x, Tensor out_grad, float alpha) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : leaky_relu_grad - backward_api : lerp_grad forward : transpose (Tensor x, Tensor y, Tensor weight) -> Tensor(out) args : (Tensor x, Tensor y, Tensor weight, Tensor out, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : lerp_grad - backward_api : lgamma_grad forward : lgamma(Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : lgamma_grad - backward_api : log10_grad forward : log10 (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : log10_grad - backward_api : log1p_grad forward : log1p (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : log1p_grad - backward_api : log2_grad forward : log2 (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : log2_grad - backward_api : log_grad forward : log (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : log_grad - backward_api : log_loss_grad forward : log_loss (Tensor input, Tensor label, float epsilon) -> Tensor(out) args : (Tensor input, Tensor label, Tensor out_grad, float epsilon) output : Tensor(input_grad) infer_meta : func : UnchangedInferMeta param : [input] kernel : func : log_loss_grad - backward_api : log_softmax_grad forward : log_softmax(Tensor x, int axis) -> Tensor(out) args : (Tensor out, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out] kernel : func : log_softmax_grad - backward_api : logsigmoid_grad forward : logsigmoid (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : logsigmoid_grad - backward_api : logsumexp_grad forward : logsumexp(Tensor x, int64_t[] axis, bool keepdim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keepdim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : logsumexp_grad - backward_api : masked_select_grad forward : masked_select (Tensor x, Tensor mask) -> Tensor(out) args : (Tensor x, Tensor mask, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : masked_select_grad data_type : x - backward_api : matmul_double_grad forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, y, grad_out] kernel : func : matmul_double_grad optional : grad_x_grad, grad_y_grad - backward_api : matmul_grad forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : matmul_grad backward : matmul_double_grad - backward_api : matrix_power_grad forward : matrix_power (Tensor x, int n) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int n) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : matrix_power_grad - backward_api : max_grad forward: max (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : max_grad - backward_api : max_pool2d_with_index_grad forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask) args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) output : Tensor(x_grad) infer_meta : func : MaxPoolWithIndexGradInferMeta kernel : func : max_pool2d_with_index_grad - backward_api : max_pool3d_with_index_grad forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask) args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) output : Tensor(x_grad) infer_meta : func : MaxPoolWithIndexGradInferMeta kernel : func : max_pool3d_with_index_grad - backward_api : maximum_grad forward : maximum(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : maximum_grad - backward_api : mean_grad forward: mean (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : mean_grad - backward_api : min_grad forward: min (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : min_grad - backward_api : minimum_grad forward : minimum(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : minimum_grad - backward_api : mish_grad forward : mish (Tensor x, float threshold) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : mish_grad - backward_api : mode_grad forward : mode(Tensor x, int axis, bool keepdim) -> Tensor(out), Tensor(indices) args : (Tensor x, Tensor indices, Tensor out_grad, int axis, bool keepdim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : mode_grad - backward_api : modulo_grad forward : add (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : modulo_grad no_need_buffer : x, y - backward_api : multiply_grad forward : multiply (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : multiply_grad - backward_api : mv_grad forward : mv (Tensor x, Tensor vec) -> Tensor(out) args : (Tensor x, Tensor vec, Tensor out_grad) output : Tensor(x_grad), Tensor(vec_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, vec] kernel : func : mv_grad - backward_api : nll_loss_grad forward : nll_loss (Tensor input, Tensor label, Tensor weight, int64_t ignore_index, str reduction) -> Tensor(out), Tensor(total_weight) args : (Tensor input, Tensor label, Tensor weight, Tensor total_weight, Tensor out_grad, int64_t ignore_index, str reduction) output : Tensor(input_grad) infer_meta : func : NllLossGradInferMeta kernel : func : nll_loss_grad data_type : input optional : weight - backward_api : p_norm_grad forward : p_norm(Tensor x, float porder, int axis, float epsilon, bool keepdim, bool asvector=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, float porder, int axis, float epsilon, bool keepdim, bool asvector) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : p_norm_grad - backward_api : pad3d_grad forward : pad3d(Tensor x, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray paddings, str mode, float pad_value, str data_format) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pad3d_grad - backward_api : pool2d_grad forward : pool2d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(x_grad) infer_meta : func : PoolGradInferMeta kernel : func : pool2d_grad - backward_api : pool3d_grad forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(x_grad) infer_meta : func : PoolGradInferMeta kernel : func : pool3d_grad - backward_api : pow_grad forward : pow(Tensor x, Scalar s) -> Tensor(out) args : (Tensor x, Tensor out_grad, Scalar s=-1) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pow_grad - backward_api : prelu_grad forward : prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out) args : (Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode) output : Tensor(x_grad), Tensor(alpha_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, alpha] kernel : func : prelu_grad - backward_api : psroi_pool_grad forward : psroi_pool (Tensor x, Tensor rois, Tensor rois_num, int pooled_weight, int pooled_width, int output_channels, float spatial_scale ) -> Tensor(out) args : (Tensor x, Tensor rois, Tensor rois_num, Tensor out_grad, int pooled_weight, int pooled_width, int output_channels, float spatial_scale) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : psroi_pool_grad optional : rois_num # output is optional - backward_api : put_along_axis_grad forward : put_along_axis (Tensor x, Tensor index, Tensor value, int axis, str reduce) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad, int axis, str reduce) output : Tensor(x_grad), Tensor(value_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, index] kernel : func : put_along_axis_grad - backward_api : reciprocal_grad forward : reciprocal (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : reciprocal_grad - backward_api : reduce_prod_grad forward : reduce_prod (Tensor x, int64_t[] dims, bool keep_dim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims, bool keep_dim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : prod_grad - backward_api : relu_double_grad forward : relu_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x) args : (Tensor out, Tensor grad_x_grad) output : Tensor(out_grad), Tensor(grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [out, out] kernel : func : relu_double_grad - backward_api : relu_grad forward : relu (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : relu_grad backward: relu_double_grad - backward_api : reshape_grad forward : reshape_with_xshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape) args : (Tensor xshape, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param : [xshape] kernel : func : reshape_grad param : [out_grad] data_type: out_grad backend: out_grad layout: out_grad - backward_api : roll_grad forward : roll(Tensor x, IntArray shifts, int64_t[] axis) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray shifts, int64_t[] axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : roll_grad data_type : x - backward_api : round_grad forward : round(Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out_grad] kernel : func : round_grad - backward_api : scale_grad forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out) args : (Tensor out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true) output : Tensor(x_grad) invoke : scale(out_grad, scale, bias, bias_after_scale) - backward_api : scatter_grad forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out) args : (Tensor index, Tensor updates, Tensor out_grad, bool overwrite) output : Tensor(x_grad), Tensor(updates_grad) infer_meta : func : ScatterGradInferMeta param : [index, updates, out_grad, overwrite] kernel : func : scatter_grad - backward_api : scatter_nd_add_grad forward : scatter (Tensor x, Tensor index, Tensor updates) -> Tensor(out) args : (Tensor index, Tensor updates, Tensor out_grad) output : Tensor(x_grad), Tensor(updates_grad) infer_meta : func : ScatterNdAddGradInferMeta param : [index, updates, out_grad] kernel : func : scatter_nd_grad - backward_api : segment_pool_grad forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids) args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : segment_pool_grad - backward_api : selu_grad forward : selu (Tensor x, float scale, float alpha) -> Tensor(out) args : (Tensor out, Tensor out_grad, float scale, float alpha) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : selu_grad - backward_api : sigmoid_cross_entropy_with_logits_grad forward : sigmoid_cross_entropy_with_logits (Tensor x, Tensor label, bool normalize, int ignore_index) -> Tensor(out) args : (Tensor x, Tensor label, Tensor out_grad, bool normalize, int ignore_index) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sigmoid_cross_entropy_with_logits_grad - backward_api : sigmoid_grad forward : sigmoid (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : sigmoid_grad - backward_api : silu_grad forward : silu (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : silu_grad - backward_api : sin_grad forward : sin (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sin_grad - backward_api : sinh_grad forward : sinh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sinh_grad - backward_api : slice_grad forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out) args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) output : Tensor(input_grad) infer_meta : func : UnchangedInferMeta param : [input] kernel : func : slice_grad - backward_api : soft_shrink_grad forward : soft_shrink (Tensor x, float lambda) -> Tensor(out) args : (Tensor x, Tensor out_grad, float lambda) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : soft_shrink_grad - backward_api : softmax_grad forward : softmax (Tensor x, int axis) -> Tensor(out) args : (Tensor out, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : softmax_grad - backward_api : split_grad forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out) args : (Tensor[] out_grad, Scalar axis) output : Tensor(x_grad) invoke : concat( out_grad, axis) # TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future. - backward_api : sqrt_grad forward : sqrt (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : sqrt_grad - backward_api : square_grad forward : square (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : square_grad - backward_api : squeeze_grad forward : squeeze(Tensor x, int[] axes) -> Tensor(xshape), Tensor(out) args : (Tensor xshape, Tensor out_grad, int[] axes) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param: [xshape] kernel : func : squeeze_grad - backward_api : strided_slice_grad forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : strided_slice_grad - backward_api : subtract_grad forward : subtract (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : subtract_grad - backward_api : sum_grad forward : sum (Tensor x, int64_t[] dims={}, DataType out_dtype=paddle::experimental::DataType::UNDEFINED, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out_grad, int64_t[] dims, bool keep_dim, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sum_grad - backward_api : take_along_axis_grad forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : take_along_axis_grad - backward_api : tan_grad forward : tan (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : tan_grad - backward_api : tanh_grad forward : tanh (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : tanh_grad - backward_api : tanh_shrink_grad forward : tanh_shrink (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : tanh_shrink_grad - backward_api : thresholded_relu_grad forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : thresholded_relu_grad - backward_api : tile_grad forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray repeat_times) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : tile_grad - backward_api : top_k_grad forward : top_k (Tensor x, Scalar k, int axis = -1, bool largest = true, bool sorted = true) -> Tensor(out), Tensor(indices) args : (Tensor x, Tensor indices, Tensor out_grad, Scalar k = -1, int axis = -1, bool largest = true, bool sorted = true) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : top_k_grad - backward_api : trace_grad forward : trace (Tensor x, int offset, int axis1, int axis2) -> Tensor(out) args : (Tensor x, Tensor out_grad, int offset, int axis1, int axis2) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : trace_grad - backward_api : transpose_grad forward : transpose (Tensor x, int[] axis) -> Tensor(out) args : (Tensor out_grad, int[] axis) output : Tensor(x_grad) infer_meta : func : TransposeGradInferMeta param : [out_grad, axis] kernel : func : transpose_grad - backward_api : tril_triu_grad forward : tril_triu(Tensor x, int diagonal, bool lower) -> Tensor(out) args : (Tensor out_grad, int diagonal, bool lower) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : tril_triu_grad - backward_api : trunc_grad forward : trunc (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : trunc_grad - backward_api : unfold_grad forward : unfold (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : unfold_grad - backward_api : unsqueeze_grad forward : unsqueeze(Tensor x, IntArray axes) -> Tensor(xshape), Tensor(out) args : (Tensor xshape, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param: [xshape] kernel : func : unsqueeze_grad - backward_api : where_grad forward : where (Tensor condition, Tensor x, Tensor y) -> Tensor(out) args : (Tensor condition, Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : where_grad