#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid from op_test import OpTest from paddle.fluid import Program, program_guard from paddle.fluid.framework import convert_np_dtype_to_dtype_ # Situation 1: Attr(shape) is a list(without tensor) class TestEmptyOp(OpTest): def setUp(self): self.op_type = "empty" self.init_config() def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): data_type = outs[0].dtype if data_type in ['float32', 'float64', 'int32', 'int64']: max_value = np.nanmax(outs[0]) min_value = np.nanmin(outs[0]) always_full_zero = max_value == 0.0 and min_value == 0.0 always_non_full_zero = max_value >= min_value self.assertTrue(always_full_zero or always_non_full_zero, 'always_full_zero or always_non_full_zero.') elif data_type in ['bool']: total_num = outs[0].size true_num = np.sum(outs[0] == True) false_num = np.sum(outs[0] == False) self.assertTrue(total_num == true_num + false_num, 'The value should always be True or False.') else: self.assertTrue(False, 'invalid data type') def init_config(self): shape = [500, 3] dtype = 'float32' dtype_inner = convert_np_dtype_to_dtype_(dtype) self.attrs = {'shape': shape, 'dtype': dtype_inner} self.inputs = {} self.outputs = {'Out': np.zeros(shape).astype(dtype)} class TestEmptyOp2(TestEmptyOp): def init_config(self): shape = [500, 3] dtype = 'float64' dtype_inner = convert_np_dtype_to_dtype_(dtype) self.attrs = {'shape': shape, 'dtype': dtype_inner} self.inputs = {} self.outputs = {'Out': np.zeros(shape).astype(dtype)} class TestEmptyOp3(TestEmptyOp): def init_config(self): shape = [500, 3] dtype = 'int32' dtype_inner = convert_np_dtype_to_dtype_(dtype) self.attrs = {'shape': shape, 'dtype': dtype_inner} self.inputs = {} self.outputs = {'Out': np.zeros(shape).astype(dtype)} class TestEmptyOp4(TestEmptyOp): def init_config(self): shape = [500, 3] dtype = 'int64' dtype_inner = convert_np_dtype_to_dtype_(dtype) self.attrs = {'shape': shape, 'dtype': dtype_inner} self.inputs = {} self.outputs = {'Out': np.zeros(shape).astype(dtype)} class TestEmptyOp5(TestEmptyOp): def init_config(self): shape = [500, 3] dtype = 'bool' dtype_inner = convert_np_dtype_to_dtype_(dtype) self.attrs = {'shape': shape, 'dtype': dtype_inner} self.inputs = {} self.outputs = {'Out': np.zeros(shape).astype(dtype)} # Situation 2: shape is a tensor class TestEmptyOp_ShapeTensor(OpTest): def setUp(self): self.op_type = "empty" self.init_config() def init_config(self): self.shape = [500, 3] dtype = 'float32' dtype_inner = convert_np_dtype_to_dtype_(dtype) self.attrs = {'dtype': dtype_inner} self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")} self.outputs = {'Out': np.zeros(self.shape).astype(dtype)} def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): data_type = outs[0].dtype if data_type in ['float32', 'float64', 'int32', 'int64']: max_value = np.nanmax(outs[0]) min_value = np.nanmin(outs[0]) always_full_zero = max_value == 0.0 and min_value == 0.0 always_non_full_zero = max_value >= min_value self.assertTrue(always_full_zero or always_non_full_zero, 'always_full_zero or always_non_full_zero.') elif data_type in ['bool']: total_num = outs[0].size true_num = np.sum(outs[0] == True) false_num = np.sum(outs[0] == False) self.assertTrue(total_num == true_num + false_num, 'The value should always be True or False.') else: self.assertTrue(False, 'invalid data type') # Situation 3: Attr(shape) is a list(with tensor) class TestEmptyOp_ShapeTensorList(OpTest): def setUp(self): self.op_type = "empty" self.init_config() def init_config(self): self.shape = [123, 92] self.infer_shape = [-1, 92] dtype = 'float32' dtype_inner = convert_np_dtype_to_dtype_(dtype) shape_tensor_list = [] for index, ele in enumerate(self.shape): shape_tensor_list.append(("x" + str(index), np.ones( (1)).astype('int32') * ele)) self.inputs = {"ShapeTensorList": shape_tensor_list} self.attrs = {'shape': self.infer_shape, 'dtype': dtype_inner} self.outputs = {'Out': np.zeros(self.shape).astype(dtype)} def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): data_type = outs[0].dtype if data_type in ['float32', 'float64', 'int32', 'int64']: max_value = np.nanmax(outs[0]) min_value = np.nanmin(outs[0]) always_full_zero = max_value == 0.0 and min_value == 0.0 always_non_full_zero = max_value >= min_value self.assertTrue(always_full_zero or always_non_full_zero, 'always_full_zero or always_non_full_zero.') elif data_type in ['bool']: total_num = outs[0].size true_num = np.sum(outs[0] == True) false_num = np.sum(outs[0] == False) self.assertTrue(total_num == true_num + false_num, 'The value should always be True or False.') else: self.assertTrue(False, 'invalid data type') class TestEmptyAPI(unittest.TestCase): def __check_out__(self, out, dtype='float32'): max_value = np.nanmax(np.array(out)) min_value = np.nanmin(np.array(out)) always_non_full_zero = max_value >= min_value always_full_zero = max_value == 0.0 and min_value == 0.0 self.assertTrue(always_full_zero or always_non_full_zero, 'always_full_zero or always_non_full_zero.') def test_dygraph_api_out(self): paddle.disable_static() shape = [200, 3] out = paddle.empty(shape=shape) self.__check_out__(out) paddle.enable_static() def test_dygraph_api_out_2(self): paddle.disable_static() shape_data = np.array([200, 3]).astype('int32') shape = paddle.to_tensor(shape_data) out = paddle.empty(shape=shape) self.__check_out__(out) paddle.enable_static() def test_dygraph_api_out_3(self): paddle.disable_static() shape_data = np.array([200, 3]).astype('int64') shape = paddle.to_tensor(shape_data) out = paddle.empty(shape=shape) self.__check_out__(out) paddle.enable_static() def test_dygraph_api_attr(self): paddle.disable_static() shape = [200, 3] dtype = 'float64' out = paddle.empty(shape=shape, dtype=dtype) self.__check_out__(out, dtype) paddle.enable_static() def test_static_graph(self): dtype = 'float64' positive_2_int32 = fluid.layers.fill_constant([1], "int32", 3) positive_2_int64 = fluid.layers.fill_constant([1], "int64", 3) shape_tensor_int32 = fluid.data( name="shape_tensor_int32", shape=[2], dtype="int32") shape_tensor_int64 = fluid.data( name="shape_tensor_int64", shape=[2], dtype="int64") shape_tensor_unknown = fluid.data( name="shape_tensor_unknown", shape=[-1], dtype="int64") out_1 = paddle.empty(shape=[200, 3], dtype=dtype) out_2 = paddle.empty(shape=shape_tensor_int32, dtype=dtype) out_3 = paddle.empty(shape=shape_tensor_int64, dtype=dtype) out_4 = paddle.empty(shape=[200, positive_2_int32], dtype=dtype) out_5 = paddle.empty(shape=[200, positive_2_int64], dtype=dtype) out_6 = paddle.empty(shape=shape_tensor_unknown, dtype=dtype) place = paddle.CPUPlace() exe = paddle.static.Executor(place) res_1, res_2, res_3, res_4, res_5, res_6 = exe.run( fluid.default_main_program(), feed={ "shape_tensor_int32": np.array([200, 3]).astype("int32"), "shape_tensor_int64": np.array([200, 3]).astype("int64"), "shape_tensor_unknown": np.array([200, 3]).astype("int64"), }, fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6]) self.__check_out__(res_1, dtype) self.__check_out__(res_2, dtype) self.__check_out__(res_3, dtype) self.__check_out__(res_4, dtype) self.__check_out__(res_5, dtype) self.__check_out__(res_6, dtype) class TestEmptyError(unittest.TestCase): def test_attr(self): def test_dtype(): shape = [200, 3] dtype = 'uint8' result = paddle.empty(shape=shape, dtype=dtype) self.assertRaises(TypeError, test_dtype) if __name__ == '__main__': unittest.main()