/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/mixed_vector.h" #include "paddle/fluid/platform/device_context.h" namespace paddle { namespace platform { template struct ForRangeIn { ForRangeIn(const DeviceContext& dev_ctx, std::vector range); template void operator()(Function func) const; }; template <> struct ForRangeIn { ForRangeIn(const CPUDeviceContext& dev_ctx, std::vector range) : range_(range) {} template void operator()(Function func) const { for (auto i : range_) { func(i); } } std::vector range_; }; template struct ForRange { ForRange(const DeviceContext& dev_ctx, size_t limit); template void operator()(Function func) const; }; template <> struct ForRange { ForRange(const CPUDeviceContext& dev_ctx, size_t limit) : limit_(limit) {} template void operator()(Function func) const { for (size_t i = 0; i < limit_; ++i) { func(i); } } size_t limit_; }; #ifdef __NVCC__ template __global__ static void ForRangeElemwiseOpGridIsOne(Function func) { size_t idx = static_cast(threadIdx.x); func(idx); } template __global__ static void ForRangeElemwiseOp(Function func, int limit) { size_t idx = static_cast(blockIdx.x * blockDim.x + threadIdx.x); if (idx < limit) { func(idx); } } template <> struct ForRange { ForRange(const CUDADeviceContext& dev_ctx, size_t limit) : dev_ctx_(dev_ctx), limit_(static_cast(limit)) {} template inline void operator()(Function func) const { constexpr int num_threads = 1024; int block_size = limit_ <= num_threads ? limit_ : num_threads; int grid_size = (limit_ + num_threads - 1) / num_threads; if (grid_size == 1) { ForRangeElemwiseOpGridIsOne<<<1, block_size, 0, dev_ctx_.stream()>>>( func); } else { ForRangeElemwiseOp<<>>( func, limit_); } } const CUDADeviceContext& dev_ctx_; int limit_; }; template __global__ static void ForRangeInElemwiseOp(Function func, T* vector, int vector_size) { size_t idx = static_cast(blockIdx.x * blockDim.x + threadIdx.x); if (idx < vector_size) { func(vector[idx]); } } template <> struct ForRangeIn { ForRangeIn(const CUDADeviceContext& dev_ctx, std::vector range) : dev_ctx_(dev_ctx), range_(range) {} template inline void operator()(Function func) const { constexpr int num_threads = 1024; int range_size = range_.size(); int block_size = range_size <= num_threads ? range_size : num_threads; int grid_size = (range_.size() + num_threads - 1) / num_threads; ForRangeInElemwiseOp<<>>( func, range_.data(), range_size); } const CUDADeviceContext& dev_ctx_; framework::Vector range_; }; #endif } // namespace platform } // namespace paddle