/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/operators/detection/nms_op.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" static const int64_t threadsPerBlock = sizeof(int64_t) * 8; namespace paddle { namespace operators { using framework::Tensor; template static __global__ void NMS(const T* boxes_data, float threshold, int64_t num_boxes, uint64_t* masks) { auto raw_start = blockIdx.y; auto col_start = blockIdx.x; if (raw_start > col_start) return; const int raw_last_storage = min(num_boxes - raw_start * threadsPerBlock, threadsPerBlock); const int col_last_storage = min(num_boxes - col_start * threadsPerBlock, threadsPerBlock); if (threadIdx.x < raw_last_storage) { uint64_t mask = 0; auto current_box_idx = raw_start * threadsPerBlock + threadIdx.x; const T* current_box = boxes_data + current_box_idx * 4; for (int i = 0; i < col_last_storage; ++i) { const T* target_box = boxes_data + (col_start * threadsPerBlock + i) * 4; if (CalculateIoU(current_box, target_box, threshold)) { mask |= 1ULL << i; } } const int blocks_per_line = CeilDivide(num_boxes, threadsPerBlock); masks[current_box_idx * blocks_per_line + col_start] = mask; } } template class NMSCudaKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* boxes = context.Input("Boxes"); Tensor* output = context.Output("KeepBoxesIdxs"); auto* output_data = output->mutable_data(context.GetPlace()); auto threshold = context.template Attr("iou_threshold"); const int64_t num_boxes = boxes->dims()[0]; const auto blocks_per_line = CeilDivide(num_boxes, threadsPerBlock); dim3 block(threadsPerBlock); dim3 grid(blocks_per_line, blocks_per_line); auto mask_data = memory::Alloc(context.cuda_device_context(), num_boxes * blocks_per_line * sizeof(uint64_t)); uint64_t* mask_dev = reinterpret_cast(mask_data->ptr()); NMS<<>>( boxes->data(), threshold, num_boxes, mask_dev); std::vector mask_host(num_boxes * blocks_per_line); memory::Copy(platform::CPUPlace(), mask_host.data(), context.GetPlace(), mask_dev, num_boxes * blocks_per_line * sizeof(uint64_t), context.cuda_device_context().stream()); std::vector remv(blocks_per_line); std::vector keep_boxes_idxs(num_boxes); int64_t* output_host = keep_boxes_idxs.data(); int64_t last_box_num = 0; for (int64_t i = 0; i < num_boxes; ++i) { auto remv_element_id = i / threadsPerBlock; auto remv_bit_id = i % threadsPerBlock; if (!(remv[remv_element_id] & 1ULL << remv_bit_id)) { output_host[last_box_num++] = i; uint64_t* current_mask = mask_host.data() + i * blocks_per_line; for (auto j = remv_element_id; j < blocks_per_line; ++j) { remv[j] |= current_mask[j]; } } } memory::Copy(context.GetPlace(), output_data, platform::CPUPlace(), output_host, sizeof(int64_t) * num_boxes, context.cuda_device_context().stream()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL(nms, ops::NMSCudaKernel, ops::NMSCudaKernel);