/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "optimizer_conf.h" #include "paddle/fluid/framework/fleet/heter_ps/feature_value.h" #ifdef PADDLE_WITH_HETERPS namespace paddle { namespace framework { __device__ double cuda_double_random(unsigned long long seed) { // copy from MurmurHash3 seed ^= seed >> 33; seed *= 0xff51afd7ed558ccd; seed ^= seed >> 33; seed *= 0xc4ceb9fe1a85ec53; seed ^= seed >> 33; return ((double)seed / 18446744073709551615.0); } __device__ float cuda_normal_random(unsigned long long idx) { static double pi = 3.1415926897932384; unsigned long long x = clock64() + idx; double x1, x2, res; while (1) { x1 = cuda_double_random(x); x2 = cuda_double_random(x + 33); res = sqrt(-2.0 * log(x1)) * cos(2.0 * pi * x2); if (-10 < res && res < 10) break; x += 207; } return res; } template class Optimizer { public: Optimizer() {} ~Optimizer() {} void initialize() {} __device__ void update_lr(float& w, float& g2sum, float g, float scale) { double add_g2sum = 0; double ratio = optimizer_config::learning_rate * sqrt(optimizer_config::initial_g2sum / (optimizer_config::initial_g2sum + g2sum)); double scaled_grad = g / scale; w += scaled_grad * ratio; if (w < optimizer_config::min_bound) w = optimizer_config::min_bound; if (w > optimizer_config::max_bound) w = optimizer_config::max_bound; add_g2sum = scaled_grad * scaled_grad; g2sum += add_g2sum; } __device__ void update_mf(int n, float* w, float& g2sum, const float* g, float scale) { double add_g2sum = 0; double ratio = optimizer_config::mf_learning_rate * sqrt(optimizer_config::mf_initial_g2sum / (optimizer_config::mf_initial_g2sum + g2sum)); for (int i = 0; i < n; ++i) { double scaled_grad = g[i] / scale; w[i] += scaled_grad * ratio; if (w[i] < optimizer_config::mf_min_bound) w[i] = optimizer_config::mf_min_bound; if (w[i] > optimizer_config::mf_max_bound) w[i] = optimizer_config::mf_max_bound; add_g2sum = scaled_grad * scaled_grad; } g2sum += add_g2sum / n; } __device__ void update_value(ValType& val, const GradType& grad) { val.slot = grad.slot; ; val.show += grad.show; val.clk += grad.clk; update_lr(val.lr, val.lr_g2sum, grad.lr_g, 1.0); if (val.mf_size == 0) { if (optimizer_config::mf_create_thresholds <= optimizer_config::nonclk_coeff * (val.show - val.clk) + optimizer_config::clk_coeff * val.clk) { val.mf_size = MF_DIM + 1; val.mf[0] = 0; int tid_x = blockIdx.x * blockDim.x + threadIdx.x; curandState state; curand_init(clock64(), tid_x, 0, &state); for (int i = 0; i < MF_DIM; ++i) { val.mf[i + 1] = (curand_uniform(&state)) * optimizer_config::mf_initial_range; } } } else { update_mf(MF_DIM, &val.mf[1], val.mf[0], grad.mf_g, 1.0); } } }; } // end namespace framework } // end namespace paddle #endif