/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include "ngraph/ngraph.hpp" #include "paddle/fluid/operators/ngraph/ops/op_bridge.h" #include "paddle/fluid/platform/ngraph_helper.h" namespace paddle { namespace operators { namespace ngraphs { void BuildReduceSumNode( const std::shared_ptr &op, std::shared_ptr< std::unordered_map>> ngb_node_map) { auto input = paddle::platform::GetInputNode(op, "X", ngb_node_map); auto op_attrs = paddle::framework::AttrReader(op->Attrs()); bool reduce_all = op_attrs.Get("reduce_all"); bool keep_dim = op_attrs.Get("keep_dim"); std::vector dim = op_attrs.Get>("dim"); auto input_shape = input->get_shape(); ngraph::AxisSet axes; if (reduce_all == true) { for (size_t i = 0; i < input_shape.size(); ++i) { axes.insert(i); } } else { for (auto &i : dim) { if (i < 0) { axes.insert(input_shape.size() + i); } else { axes.insert(i); } } } std::shared_ptr reduce_sum = std::make_shared(input, axes); if (keep_dim == true) { std::vector dim_shape; std::copy(input_shape.begin(), input_shape.end(), std::back_inserter(dim_shape)); for (auto &i : dim) { if (i < 0) { i = input_shape.size() + i; } dim_shape[i] = 1; } std::vector axis_vector(input_shape.size() - dim.size()); std::iota(axis_vector.begin(), axis_vector.end(), 0); auto reduce_sum_dim = std::make_shared( reduce_sum, ngraph::AxisVector(axis_vector), ngraph::Shape(dim_shape)); paddle::platform::SetOutputNode(op, "Out", reduce_sum_dim, ngb_node_map); } else { if (reduce_sum->get_shape() == ngraph::Shape{}) { reduce_sum = paddle::platform::NgReshaper(reduce_sum, ngraph::Shape{1}); } paddle::platform::SetOutputNode(op, "Out", reduce_sum, ngb_node_map); } } void BuildReduceSumGradNode( const std::shared_ptr &op, std::shared_ptr< std::unordered_map>> ngb_node_map) { auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map); auto og = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map); auto op_attrs = paddle::framework::AttrReader(op->Attrs()); std::vector dim = op_attrs.Get>("dim"); bool reduce_all = op_attrs.Get("reduce_all"); bool keep_dim = op_attrs.Get("keep_dim"); auto og_shape = og->get_shape(); auto x_shape = x->get_shape(); float x_size = std::accumulate(std::begin(x_shape), std::end(x_shape), 1, std::multiplies()); float og_size = std::accumulate(std::begin(og_shape), std::end(og_shape), 1, std::multiplies()); ngraph::AxisSet axes; if (reduce_all == true) { for (size_t i = 0; i < x_shape.size(); i++) { axes.insert(i); } } else { for (auto &i : dim) { if (i < 0) { axes.insert(x_shape.size() + i); } else { axes.insert(i); } } } std::vector axis_vector(og_shape.size()); std::iota(axis_vector.begin(), axis_vector.end(), 0); std::vector dim_shape; for (size_t i = 0; i < x_shape.size(); i++) { if (std::find(dim.begin(), dim.end(), i) == dim.end() && std::find(dim.begin(), dim.end(), i - x_shape.size()) == dim.end()) { dim_shape.push_back(x_shape[i]); } } if (keep_dim == true) { // reshape if (x_size == og_size) { paddle::platform::SetOutputNode(op, "X@GRAD", og, ngb_node_map); return; } auto og_dim = std::make_shared( og, ngraph::AxisVector(axis_vector), ngraph::Shape(dim_shape)); auto result = std::make_shared(og_dim, x_shape, axes); paddle::platform::SetOutputNode(op, "X@GRAD", result, ngb_node_map); } else { if (x_size == og_size) { auto og_dim = std::make_shared( og, ngraph::AxisVector(axis_vector), x_shape); paddle::platform::SetOutputNode(op, "X@GRAD", og_dim, ngb_node_map); } else { if (og->get_shape().size() == 1 && og->get_shape()[0] == 1) { og = std::make_shared(og, ngraph::AxisVector{0}, ngraph::Shape{}); } auto result = std::make_shared(og, x_shape, axes); paddle::platform::SetOutputNode(op, "X@GRAD", result, ngb_node_map); } } } } // namespace ngraphs } // namespace operators } // namespace paddle REGISTER_NG_OP(reduce_sum, BuildReduceSumNode); REGISTER_NG_OP(reduce_sum_grad, BuildReduceSumGradNode);