// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/layer.h" #include #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/string/printf.h" namespace paddle { namespace imperative { const char* PyLayer::kFwdInp = "X"; const char* PyLayer::kFwdOut = "Out"; std::map py_funcs_; using framework::Variable; namespace detail { template class TensorAddToFunctor : public boost::static_visitor<> { public: TensorAddToFunctor(int64_t numel, const T* x, T* y) : numel_(numel), x_(x), y_(y) {} void operator()(const platform::CPUPlace& place) { platform::CPUDeviceContext* ctx = dynamic_cast( platform::DeviceContextPool::Instance().Get(place)); auto blas = operators::math::GetBlas(*ctx); blas.AXPY(numel_, 1., x_, y_); } #ifdef PADDLE_WITH_CUDA void operator()(const platform::CUDAPlace& place) { platform::CUDADeviceContext* ctx = dynamic_cast( platform::DeviceContextPool::Instance().Get(place)); auto blas = operators::math::GetBlas(*ctx); blas.AXPY(numel_, 1., x_, y_); } #else void operator()(const platform::CUDAPlace& place) { PADDLE_THROW("Do NOT support gradient merge in place %s", place); } #endif // there is NO blas in CUDAPinnedPlace void operator()(const platform::CUDAPinnedPlace& place) { PADDLE_THROW("Do NOT support gradient merge in place %s", place); } private: int64_t numel_; const T* x_; T* y_; }; } // namespace detail void AddTo(Variable* src, Variable* dst, platform::Place place) { framework::Tensor* dst_tensor = dst->GetMutable(); framework::Tensor* src_tensor = src->GetMutable(); // FIXME(minqiyang): loss_grad op will pass a zero grad of label // ugly fix for it if (src_tensor->numel() == 0) { return; } PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(), "dst_numel %lld vs. src_numel %lld", dst_tensor->numel(), src_tensor->numel()); detail::TensorAddToFunctor func( src_tensor->numel(), src_tensor->data(), dst_tensor->mutable_data(place)); boost::apply_visitor(func, place); } class Autograd { public: Autograd() {} void RunBackward(VarBase* var) { if (var->IsStopGradient()) { return; } VLOG(3) << "start autograd"; std::deque ready; ready.push_back(var->PreOp()); std::map dep_counts = ComputeDepCounts(var->PreOp()); while (!ready.empty()) { OpBase* ready_op = ready.front(); ready.pop_front(); std::map> input_grads = ready_op->ApplyGrad(); for (auto it : input_grads) { const std::vector& ingrads = it.second; for (size_t i = 0; i < ingrads.size(); ++i) { if (!ingrads[i]) continue; if (ready_op->input_vars_[it.first][i]->IsStopGradient()) { continue; } OpBase* pre_op = ready_op->pre_ops_[it.first][i]; if (!pre_op) continue; dep_counts[pre_op] -= 1; PADDLE_ENFORCE(dep_counts[pre_op] >= 0); bool pre_op_ready = dep_counts[pre_op] == 0; if (pre_op_ready) { ready.push_back(pre_op); } } } ready_op->InvokeBackwardHooks(); } } private: std::map ComputeDepCounts(OpBase* op) { std::map ret; std::deque queue; queue.push_back(op); std::unordered_set visited; visited.insert(op); while (!queue.empty()) { OpBase* candidate = queue.front(); queue.pop_front(); for (auto it : candidate->pre_ops_) { for (OpBase* pre_op : it.second) { if (!pre_op) continue; VLOG(5) << "op dep " << candidate->op_desc_->Type() << " <---- " << it.first << " <---- " << pre_op->op_desc_->Type(); if (visited.find(pre_op) == visited.end()) { visited.insert(pre_op); queue.push_back(pre_op); } ret[pre_op] += 1; } } } return ret; } }; std::unique_ptr VarBase::NewVarBase(const platform::Place& dst_place, const bool blocking) const { PADDLE_ENFORCE(var_->IsInitialized(), "Variable must be initialized when getting numpy tensor"); std::unique_ptr new_var(new VarBase()); framework::LoDTensor* tensor = new_var->var_->GetMutable(); tensor->Resize(var_->Get().dims()); tensor->set_lod(var_->Get().lod()); if (blocking) { platform::DeviceContext* dev_ctx = platform::DeviceContextPool::Instance().Get(dst_place); framework::TensorCopySync(var_->Get(), dst_place, tensor); dev_ctx->Wait(); } else { framework::TensorCopy(var_->Get(), dst_place, tensor); } if (platform::is_gpu_place(dst_place)) { VLOG(3) << "copy tensor " << var_desc_->Name() << " from gpu"; } return new_var; } framework::LoDTensor& VarBase::GradValue() { VLOG(3) << "get var grad " << var_desc_->Name(); return *(grads_->var_->GetMutable()); } std::map> OpBase::ApplyGrad() { if (grad_op_descs_.empty() && backward_id_ <= 0) { VLOG(3) << "op with no grad: " << op_desc_->Type(); return {}; } VLOG(3) << "apply op grad: " << op_desc_->Type(); std::vector grad_outputs; if (backward_id_ > 0) { VLOG(3) << "py_layer_grad"; grad_outputs.resize(1); grad_outputs[0][framework::GradVarName(PyLayer::kFwdOut)] = PyLayer::ApplyGrad( backward_id_, grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)]); } else { grad_outputs.resize(grad_op_descs_.size()); for (size_t k = 0; k < grad_op_descs_.size(); ++k) { framework::OpDesc* grad_op_desc = grad_op_descs_[k]; VLOG(3) << "op grad " << grad_op_desc->Type(); for (auto it : grad_output_vars_[k]) { auto& outputs = grad_outputs[k][it.first]; for (size_t i = 0; i < it.second.size(); ++i) { // Allocate a new variable Variable* tmp_var = new framework::Variable(); tmp_var->GetMutable(); outputs.push_back(tmp_var); } } framework::RuntimeContext ctx(grad_input_vars_[k], grad_outputs[k]); // No need to do compile time infer shape here. // grad_op_desc_->InferShape(*block_); grad_op_desc->InferVarType(block_); std::unique_ptr opbase = framework::OpRegistry::CreateOp(*grad_op_desc); framework::OperatorWithKernel* op_kernel = dynamic_cast(opbase.get()); PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel"); framework::Scope scope; PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place_); p.op.RuntimeInferShape(scope, place_, ctx); p.func( framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx, nullptr)); } } for (size_t k = 0; k < grad_output_vars_.size(); ++k) { for (auto it : grad_output_vars_[k]) { auto& outputs = grad_outputs[k][it.first]; auto& origin_outputs = it.second; PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size()); for (size_t i = 0; i < outputs.size(); ++i) { framework::Variable* grad = outputs[i]; framework::Variable* orig_grad = origin_outputs[i]; AddTo(grad, orig_grad, place_); delete grad; } } } return input_vars_; } void OpBase::InvokeBackwardHooks() { VLOG(3) << "call backward hooks, hooks num: " << backward_hooks_.size(); // call backward hooks for (py::object& callable : backward_hooks_) { callable(this); } } void OpBase::RegisterBackwardHooks(const py::object& callable) { VLOG(3) << "Register backward hooks " << trace_id_; // TODO(minqiyang): check the callable format backward_hooks_.push_back(callable); } void VarBase::RunBackward() { if (!pre_op_) return; VLOG(3) << "start backward"; auto grads_t = grads_->var_->GetMutable(); operators::math::set_constant( *(platform::DeviceContextPool::Instance().Get( var_->GetMutable()->place())), grads_t, 1.0); PADDLE_ENFORCE( grads_ == pre_op_->output_vars_[pre_op_out_name_][pre_op_out_idx_]->grads_); Autograd().RunBackward(this); } void PyLayer::RegisterFunc(int func_id, const py::object& py_func) { py_funcs_[func_id] = py_func; } int PyLayer::NumFuncs() { return py_funcs_.size(); } std::vector PyLayer::Apply(int func_id, const std::vector& inputs) { std::vector invars; for (const VarBase* in : inputs) { invars.push_back(in->var_); } PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end()); std::vector outvars = CallPythonFunc(py_funcs_[func_id], invars); std::vector ret; for (Variable* v : outvars) { ret.push_back(new VarBase(v, new VarBase(true))); } return ret; } std::vector PyLayer::ApplyGrad( int func_id, const std::vector& inputs) { PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end()); return CallPythonFunc(py_funcs_[func_id], inputs); } std::vector PyLayer::CallPythonFunc( const py::object& callable, const std::vector& ins) { py::gil_scoped_acquire guard; py::tuple in_args(ins.size()); for (size_t i = 0; i < ins.size(); ++i) { const framework::LoDTensor& t = ins[i]->Get(); in_args[i] = t.IsInitialized() ? py::cast(t) : py::cast(nullptr); } VLOG(3) << "pyfunc in " << py::len(in_args); // TODO(panyx0718): Who owns the returned LoDTensor. auto ret = callable(in_args); auto ret_tuple = py::cast(ret); size_t ret_num = py::len(ret_tuple); std::vector outs; VLOG(3) << "pyfunc out " << ret_num; for (size_t i = 0; i < ret_num; ++i) { try { auto* py_out_tensor = py::cast(ret_tuple[i]); PADDLE_ENFORCE_NOT_NULL(py_out_tensor, "Output tensor %d should not be nullptr", i); auto* var = new framework::Variable(); auto* tensor = var->GetMutable(); tensor->ShareDataWith(*py_out_tensor); tensor->set_lod(py_out_tensor->lod()); outs.push_back(var); } catch (py::cast_error&) { PADDLE_THROW("The %d-th output must be LoDTensor", i); } } return outs; } } // namespace imperative } // namespace paddle