# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, compiler, program_guard from paddle.fluid.op import Operator from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16 class ElementwiseMulOp(OpTest): def init_kernel_type(self): self.use_mkldnn = False def setUp(self): self.op_type = "elementwise_mul" self.dtype = np.float64 self.axis = -1 self.init_dtype() self.init_input_output() self.init_kernel_type() self.init_axis() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y) } self.outputs = {'Out': self.out} self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_output(check_dygraph=(self.use_mkldnn == False)) def test_check_grad_normal(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad( ['X', 'Y'], 'Out', check_dygraph=(self.use_mkldnn == False)) def test_check_grad_ingore_x(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), check_dygraph=(self.use_mkldnn == False)) def test_check_grad_ingore_y(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), check_dygraph=(self.use_mkldnn == False)) def init_input_output(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.out = np.multiply(self.x, self.y) def init_dtype(self): pass def init_axis(self): pass class TestBF16ElementwiseMulOp(OpTest): def setUp(self): self.op_type = "elementwise_mul" self.dtype = np.uint16 self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) self.out = np.multiply(self.x, self.y) self.axis = -1 self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(self.x)), 'Y': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(self.y)) } self.outputs = {'Out': convert_float_to_uint16(self.out)} self.attrs = {'axis': self.axis, 'use_mkldnn': False} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): self.check_grad(['Y'], 'Out', no_grad_set=set("X")) def test_check_grad_ingore_y(self): self.check_grad(['X'], 'Out', no_grad_set=set('Y')) @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast.") class TestElementwiseMulOp_scalar(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(10, 3, 4).astype(np.float64), 'Y': np.random.rand(1).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} self.init_kernel_type() class TestElementwiseMulOp_Vector(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.random((100, )).astype("float64"), 'Y': np.random.random((100, )).astype("float64") } self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])} self.init_kernel_type() class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp): def init_input_output(self): self.x = np.random.rand(100, 2, 3).astype(self.dtype) self.y = np.random.rand(100).astype(self.dtype) self.out = self.x * self.y.reshape(100, 1, 1) def init_axis(self): self.axis = 0 class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(2, 100, 3).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64) } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 100, 1) } self.init_kernel_type() class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64) } self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 100) } self.init_kernel_type() class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(2, 10, 12, 3).astype(np.float64), 'Y': np.random.rand(10, 12).astype(np.float64) } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 10, 12, 1) } self.init_kernel_type() class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(10, 2, 11).astype(np.float64), 'Y': np.random.rand(10, 1, 11).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} self.init_kernel_type() class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(10, 4, 2, 3).astype(np.float64), 'Y': np.random.rand(10, 4, 1, 3).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} self.init_kernel_type() @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestElementwiseMulOpFp16(ElementwiseMulOp): def init_dtype(self): self.dtype = np.float16 class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(1, 1, 100).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} self.init_kernel_type() class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(30, 3, 1, 5).astype(np.float64), 'Y': np.random.rand(30, 1, 4, 1).astype(np.float64) } self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} self.init_kernel_type() class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(10, 10).astype(np.float64), 'Y': np.random.rand(2, 2, 10, 10).astype(np.float64) } self.attrs = {'axis': 2} self.outputs = { 'Out': self.inputs['X'].reshape(1, 1, 10, 10) * self.inputs['Y'] } self.init_kernel_type() class TestElementwiseMulOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # the input of elementwise_mul must be Variable. x1 = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) y1 = fluid.create_lod_tensor( np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) self.assertRaises(TypeError, fluid.layers.elementwise_mul, x1, y1) # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64 # float16 only can be set on GPU place x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8") y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8") self.assertRaises(TypeError, fluid.layers.elementwise_mul, x2, y2) class TestComplexElementwiseMulOp(OpTest): def setUp(self): self.op_type = "elementwise_mul" self.init_base_dtype() self.init_input_output() self.init_grad_input_output() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y) } self.attrs = {'axis': -1, 'use_mkldnn': False} self.outputs = {'Out': self.out} def init_base_dtype(self): self.dtype = np.float64 def init_input_output(self): self.x = np.random.random( (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random( (2, 3, 4, 5)).astype(self.dtype) self.y = np.random.random( (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random( (2, 3, 4, 5)).astype(self.dtype) self.out = self.x * self.y def init_grad_input_output(self): self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones( (2, 3, 4, 5), self.dtype) self.grad_x = self.grad_out * np.conj(self.y) self.grad_y = self.grad_out * np.conj(self.x) def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', user_defined_grads=[self.grad_x, self.grad_y], user_defined_grad_outputs=[self.grad_out]) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), user_defined_grads=[self.grad_y], user_defined_grad_outputs=[self.grad_out]) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), user_defined_grads=[self.grad_x], user_defined_grad_outputs=[self.grad_out]) class TestRealComplexElementwiseMulOp(TestComplexElementwiseMulOp): def init_input_output(self): self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.y = np.random.random( (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random( (2, 3, 4, 5)).astype(self.dtype) self.out = self.x * self.y def init_grad_input_output(self): self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones( (2, 3, 4, 5), self.dtype) self.grad_x = np.real(self.grad_out * np.conj(self.y)) self.grad_y = self.grad_out * np.conj(self.x) if __name__ == '__main__': paddle.enable_static() unittest.main()