/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/concat_op.h" #include #include #ifdef PADDLE_WITH_MKLDNN #include #endif namespace paddle { namespace operators { using framework::Tensor; class ConcatOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL, "Inputs(X) of ConcatOp should be empty."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of ConcatOp should not be null."); auto ins = ctx->GetInputsDim("X"); size_t axis = static_cast(ctx->Attrs().Get("axis")); const size_t n = ins.size(); PADDLE_ENFORCE_GT(n, 0, "Input tensors count should > 0."); if (n == 1) { VLOG(3) << "Warning: concat op have only one input, may waste memory"; } auto out_dims = ins[0]; size_t in_zero_dims_size = out_dims.size(); for (size_t i = 1; i < n; i++) { for (size_t j = 0; j < in_zero_dims_size; j++) { if (j == axis) { out_dims[axis] += ins[i][j]; } else { PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], "Input tensors should have the same " "elements except the specify axis."); } } } if (out_dims[axis] < 0) { out_dims[axis] = -1; } ctx->SetOutputDim("Out", out_dims); ctx->ShareLoD("X", /*->*/ "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { auto input_data_type = framework::GetDataTypeOfVar(ctx.MultiInputVar("X")[0]); #ifdef PADDLE_WITH_MKLDNN if (platform::CanMKLDNNBeUsed(ctx)) { return framework::OpKernelType(input_data_type, ctx.GetPlace(), framework::DataLayout::kMKLDNN, framework::LibraryType::kMKLDNN); } #endif return framework::OpKernelType(input_data_type, ctx.GetPlace()); } }; class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Input tensors of concat operator.").AsDuplicable(); AddOutput("Out", "Output tensor of concat operator."); AddAttr( "use_mkldnn", "(bool, default false) Indicates if MKL-DNN kernel will be used") .SetDefault(false); AddAttr("axis", "The axis along which the input tensors will be concatenated.") .SetDefault(0); AddComment(R"DOC( Concat Operator. Concatenate the input tensors along dimension axis. Examples: Input[0] = [[1,2],[3,4]] Input[1] = [[5,6]] axis = 0 Output = [[1,2], [3,4], [5,6]] )DOC"); } }; class ConcatOpGrad : public framework::OperatorWithKernel { public: ConcatOpGrad(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext *ctx) const override { auto in_x = "X"; auto out_x_g_n = framework::GradVarName(in_x); ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x)); auto &in_names = ctx->Inputs(in_x); auto &out_names = ctx->Outputs(out_x_g_n); PADDLE_ENFORCE_EQ( in_names.size(), out_names.size(), "The number of arguments in %s[%d] and %s[%d] is not equal.", in_x, in_names.size(), out_x_g_n, out_names.size()); for (size_t i = 0; i < in_names.size(); ++i) { if (out_names[i] != framework::kEmptyVarName) { ctx->ShareLoD(in_x, out_x_g_n, i, i); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker, paddle::framework::DefaultGradOpDescMaker< false> /* set false to disable empty grad */); REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad); REGISTER_OP_CPU_KERNEL( concat, ops::ConcatKernel, ops::ConcatKernel, ops::ConcatKernel, ops::ConcatKernel); REGISTER_OP_CPU_KERNEL( concat_grad, ops::ConcatGradKernel, ops::ConcatGradKernel, ops::ConcatGradKernel, ops::ConcatGradKernel);