/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/argsort_op.h" #include "paddle/fluid/platform/assert.h" #include "paddle/fluid/platform/cuda_device_function.h" #include "paddle/fluid/platform/cuda_primitives.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using platform::PADDLE_CUDA_NUM_THREADS; template __global__ void PermuteInData(const T* in, const int64_t* trg_idx, int64_t n, T* med_out) { int index = threadIdx.x + blockDim.x * blockIdx.x; if (index < n) { med_out[trg_idx[index]] = in[index]; } } template __global__ void Sort(int64_t axis_dim, int64_t groups, T* med_out, int64_t* med_ids) { int index = threadIdx.x + blockDim.x * blockIdx.x; if (index < groups) { thrust::sort_by_key(thrust::device, med_out + index * axis_dim, med_out + axis_dim * (1 + index), med_ids + index * axis_dim); } } template __global__ void PermuteMediateData(const T* med_out, const int64_t* med_ids, const int64_t* trg_idx, int64_t n, T* out, int64_t* indices) { int index = threadIdx.x + blockDim.x * blockIdx.x; if (index < n) { out[index] = med_out[trg_idx[index]]; indices[index] = med_ids[trg_idx[index]]; } } template class ArgsortOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); auto* indices = ctx.Output("Indices"); int axis = ctx.Attr("axis"); auto in_dims = input->dims(); axis = (axis == -1) ? (in_dims.size() - 1) : axis; const T* in_data = input->data(); T* out_data = output->mutable_data(ctx.GetPlace()); int64_t* ids_data = indices->mutable_data(ctx.GetPlace()); int64_t numel = input->numel(); int64_t groups = numel / in_dims[axis]; // Mediate tensor for sorting Tensor mediate_output; T* med_out_data = mediate_output.mutable_data(input->dims(), ctx.GetPlace()); // The target index of each elemement in mediate tensor std::vector target_idx(numel, 0); // To record the index along the given axis for the data in mediate tensor std::vector mediate_indices(numel, 0); std::vector in_dims_out_axis = vectorize(in_dims); in_dims_out_axis.erase(in_dims_out_axis.begin() + axis); for (int64_t index = 0; index < numel; ++index) { int64_t tmp = index; int64_t pos_in_axis = 0; std::vector shape; for (int64_t j = in_dims.size() - 1; j >= 0; --j) { if (j != axis) { shape.push_back(tmp % in_dims[j]); } else { pos_in_axis = tmp % in_dims[j]; } tmp /= in_dims[j]; } std::reverse(shape.begin(), shape.end()); int64_t group = (shape.size() > 0) ? shape[0] : 0; for (size_t j = 0; j < shape.size() - 1; ++j) { group = group * in_dims_out_axis[j + 1] + shape[j + 1]; } target_idx[index] = group * in_dims[axis] + pos_in_axis; mediate_indices[target_idx[index]] = pos_in_axis; } thrust::device_vector med_ids_dev(mediate_indices.begin(), mediate_indices.end()); int64_t* med_ids_data = thrust::raw_pointer_cast(med_ids_dev.data()); thrust::device_vector trg_idx_dev(target_idx.begin(), target_idx.end()); int64_t* trg_idx = thrust::raw_pointer_cast(trg_idx_dev.data()); auto stream = reinterpret_cast( ctx.device_context()) .stream(); auto num_threads = PADDLE_CUDA_NUM_THREADS; PermuteInData<<<(numel - 1) / num_threads + 1, num_threads, 0, stream>>>( in_data, trg_idx, numel, med_out_data); Sort<<<(groups - 1) / num_threads + 1, num_threads, 0, stream>>>( in_dims[axis], groups, med_out_data, med_ids_data); PermuteMediateData<<<(numel - 1) / num_threads + 1, num_threads, 0, stream>>>(med_out_data, med_ids_data, trg_idx, numel, out_data, ids_data); } }; } // namespace operators } // namespace paddle REGISTER_OP_CUDA_KERNEL(argsort, paddle::operators::ArgsortOpCUDAKernel, paddle::operators::ArgsortOpCUDAKernel);