// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/interpolate_grad_kernel.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/fluid/platform/fast_divmod.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/common/layout.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/interpolate_function.h" #include "paddle/phi/kernels/funcs/math_cuda_utils.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template __forceinline__ __device__ void PreCalculatorForLinearInterpInputIndex( int* in_img_idx, int* x_id, T* lambda1, T* lambda2, T src_x, const int in_img_x) { src_x = (src_x > 0) ? src_x : 0.f; *in_img_idx = static_cast(src_x); *x_id = (*in_img_idx < in_img_x - 1) ? 1 : 0; *lambda1 = src_x - *in_img_idx; *lambda2 = 1.f - *lambda1; } template __global__ void KeLinearInterpBw(T* in, const size_t in_img_w, const size_t input_w, const T* out, const size_t out_img_w, const size_t output_h, const size_t output_w, const size_t num_channels, const T ratio_w, const bool align_corners, const int align_mode, const DataLayout data_layout) { int nthreads = output_h * output_w; int tid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; bool align_flag = (align_mode == 0 && !align_corners); for (; tid < nthreads; tid += stride) { int out_id_h = tid / output_w; int out_id_w = tid % output_w; int in_img_size = input_w / num_channels; int out_img_size = output_w / num_channels; int channel_id, out_img_idx; if (data_layout == DataLayout::kNCHW) { channel_id = out_id_w / out_img_size; out_img_idx = tid % out_img_w; } else { out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels; channel_id = tid % num_channels; } int in_img_idx = align_flag ? ratio_w * (out_img_idx + 0.5) - 0.5 : ratio_w * out_img_idx; in_img_idx = (in_img_idx > 0) ? in_img_idx : 0; // w int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0; // w_id T src_w = ratio_w * (out_img_idx + 0.5) - 0.5; src_w = (src_w > 0) ? src_w : 0; T w1lambda = align_flag ? src_w - in_img_idx : ratio_w * out_img_idx - in_img_idx; T w2lambda = 1.f - w1lambda; T* in_pos; if (data_layout == DataLayout::kNCHW) { in_pos = &in[out_id_h * input_w + channel_id * in_img_size + in_img_idx]; } else { in_pos = &in[out_id_h * input_w + in_img_idx * num_channels + channel_id]; } const T* out_pos = &out[out_id_w]; if (data_layout == DataLayout::kNCHW) { paddle::platform::CudaAtomicAdd(&in_pos[0], w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd(&in_pos[w_id], w1lambda * out_pos[0]); } else { paddle::platform::CudaAtomicAdd(&in_pos[0], w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd(&in_pos[w_id * num_channels], w1lambda * out_pos[0]); } } } template __global__ void KeNearestNeighborInterpNCHWBw(T* in, const size_t in_img_h, const size_t in_img_w, const T* out, const size_t out_img_h, const size_t out_img_w, const size_t nc, const float ratio_h, const float ratio_w, const bool align_corners) { int out_img_idx = threadIdx.x + blockIdx.x * blockDim.x; int out_img_idy = threadIdx.y + blockIdx.y * blockDim.y; int nc_id = threadIdx.z + blockIdx.z * blockDim.z; int nc_stride = blockDim.z * gridDim.z; // nearest_sampling by multiple read in_addr and write to out_addr int in_img_idx = (align_corners) ? static_cast(ratio_w * out_img_idx + 0.5) : static_cast(ratio_w * out_img_idx); int in_img_idy = (align_corners) ? static_cast(ratio_h * out_img_idy + 0.5) : static_cast(ratio_h * out_img_idy); int in_index = (nc_id * in_img_h + in_img_idy) * in_img_w + in_img_idx; int in_index_stride = nc_stride * in_img_h * in_img_w; int out_index = (nc_id * out_img_h + out_img_idy) * out_img_w + out_img_idx; int out_index_stride = nc_stride * out_img_h * out_img_w; // prevent from multiple threads writing if (out_img_idx < out_img_w && out_img_idy < out_img_h) { while (nc_id < nc) { T* in_pos = &in[in_index]; const T out_pos = out[out_index]; paddle::platform::CudaAtomicAdd(in_pos, out_pos); in_index += in_index_stride; out_index += out_index_stride; nc_id += nc_stride; } } } template __global__ void KeNearestNeighborInterpBw( T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h, const size_t input_w, const T* out, const size_t out_img_h, const size_t out_img_w, const size_t output_h, const size_t output_w, const size_t num_channels, const float ratio_h, const float ratio_w, const bool align_corners, funcs::FastDivModForInterpolate divmods) { int nthreads = output_h * output_w; int tid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; int in_img_size = in_img_h * in_img_w; int out_img_size = out_img_h * out_img_w; for (; tid < nthreads; tid += stride) { auto out_id_divmod = divmods.output_w_div.Divmod(tid); int out_id_h = out_id_divmod.val[0]; int out_id_w = out_id_divmod.val[1]; int channel_id = divmods.channels_div.Divmod(tid).val[1]; auto outimg_id_divmod = divmods.output_wc_div.Divmod(out_id_w); int out_img_idy = outimg_id_divmod.val[0]; int out_img_idx = divmods.channels_div.Divmod(outimg_id_divmod.val[1]).val[0]; int in_img_idy = (align_corners) ? static_cast(ratio_h * out_img_idy + 0.5) : static_cast(ratio_h * out_img_idy); int in_img_idx = (align_corners) ? static_cast(ratio_w * out_img_idx + 0.5) : static_cast(ratio_w * out_img_idx); T* in_pos = &in[out_id_h * input_w + in_img_idy * in_img_w * num_channels + in_img_idx * num_channels + channel_id]; const T out_pos = out[tid]; paddle::platform::CudaAtomicAdd(in_pos, out_pos); } } /* Calculate the minimum of partial elements in a block */ template __inline__ __device__ T PartialBlockMin(T val, size_t threads_num_in_block, unsigned mask) { __shared__ T shared[WARP_SIZE]; __shared__ T shared_last_val; __shared__ int shared_last_idx; int lane = threadIdx.x & 0x1f; int wid = threadIdx.x >> 5; int threshold = (threads_num_in_block & (-WARP_SIZE)); if (threadIdx.x < threshold) { shared_last_idx = (threshold >> 5) - 1; val = phi::funcs::warpReduceMin(val, mask); if (lane == 0) { shared[wid] = val; } } else { shared_last_val = std::numeric_limits::max(); paddle::platform::CudaAtomicMin(&shared_last_val, val); shared[wid] = shared_last_val; shared_last_idx = wid; } __syncthreads(); if (threadIdx.x < threshold) { val = (lane <= shared_last_idx) ? shared[lane] : std::numeric_limits::max(); val = phi::funcs::warpReduceMin(val, mask); shared_last_val = val; } __syncthreads(); if (threadIdx.x >= threshold) { val = shared_last_val; } return val; } template __global__ void KeBilinearInterpBwShareMemory(T* in, const int in_h, const int in_w, const T* __restrict__ out, const int out_h, const int out_w, const int n, const int num_channels, float ratio_h, float ratio_w, const T align_type_value, bool is_nchw) { __shared__ T s_data[2][1024]; int tid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; int in_chw = in_h * in_w * num_channels; int out_chw = num_channels * out_h * out_w; int nthreads = n * out_chw; for (; tid < nthreads; tid += stride) { int out_id_h = tid / out_chw; int out_id_w = tid % out_chw; const int in_img_size = in_h * in_w; const int out_img_size = out_h * out_w; T value = out[out_id_h * out_chw + out_id_w]; int channel_id = out_id_w / out_img_size; int out_img_idy = (out_id_w % out_img_size) / out_w; int out_img_idx = tid % out_w; int in_img_idx, in_img_idy, w_id, h_id; T w1lambda, h1lambda, w2lambda, h2lambda; T src_w = ratio_w * (out_img_idx + align_type_value) - align_type_value; T src_h = ratio_h * (out_img_idy + align_type_value) - align_type_value; PreCalculatorForLinearInterpInputIndex( &in_img_idx, &w_id, &w1lambda, &w2lambda, src_w, in_w); PreCalculatorForLinearInterpInputIndex( &in_img_idy, &h_id, &h1lambda, &h2lambda, src_h, in_h); // top_left_index is just input_index. int input_index = out_id_h * in_chw + channel_id * in_img_size + in_img_idy * in_w + in_img_idx; int top_right_index = input_index + w_id; int bot_left_index = input_index + h_id * in_w; int bot_right_index = input_index + h_id * in_w + w_id; int in_top_min_index, in_bot_min_index; s_data[0][threadIdx.x] = 0.f; s_data[1][threadIdx.x] = 0.f; int remain = nthreads - (tid & (-blockDim.x)); int in_top_max_index = phi::funcs::blockReduceMax(top_right_index, FINAL_MASK); int in_bot_max_index = phi::funcs::blockReduceMax(bot_right_index, FINAL_MASK); if (remain > blockDim.x) { in_top_min_index = phi::funcs::blockReduceMin(input_index, FINAL_MASK); in_bot_min_index = phi::funcs::blockReduceMin(bot_left_index, FINAL_MASK); } else { in_top_min_index = PartialBlockMin(input_index, remain, FINAL_MASK); in_bot_min_index = PartialBlockMin(bot_left_index, remain, FINAL_MASK); } int upper_limit_share_idx = (in_top_max_index - in_top_min_index) > (in_bot_max_index - in_bot_min_index) ? (in_top_max_index - in_top_min_index) : (in_bot_max_index - in_bot_min_index); if (h_id != 0) { paddle::platform::CudaAtomicAdd( &s_data[0][input_index - in_top_min_index], h2lambda * w2lambda * value); paddle::platform::CudaAtomicAdd( &s_data[0][top_right_index - in_top_min_index], h2lambda * w1lambda * value); paddle::platform::CudaAtomicAdd( &s_data[1][bot_left_index - in_bot_min_index], h1lambda * w2lambda * value); paddle::platform::CudaAtomicAdd( &s_data[1][bot_right_index - in_bot_min_index], h1lambda * w1lambda * value); } else { paddle::platform::CudaAtomicAdd( &s_data[0][top_right_index - in_top_min_index], (h2lambda + h1lambda) * w1lambda * value); paddle::platform::CudaAtomicAdd( &s_data[1][bot_left_index - in_bot_min_index], (h1lambda + h2lambda) * w2lambda * value); } __syncthreads(); if (threadIdx.x <= upper_limit_share_idx) { paddle::platform::CudaAtomicAdd(&in[in_top_min_index + threadIdx.x], s_data[0][threadIdx.x]); paddle::platform::CudaAtomicAdd(&in[in_bot_min_index + threadIdx.x], s_data[1][threadIdx.x]); } } } __device__ __forceinline__ int GetInputIndex(const size_t nc, const int height, const int width, const int h, const int w) { return (nc * height + h) * width + w; } template __global__ void KeBilinearInterpNCHWBw(T* in, const int in_h, const int in_w, const int out_h, const int out_w, const int n, const int num_channels, float ratio_h, float ratio_w, const T* __restrict__ out, const T align_type_value) { int index = threadIdx.x + blockDim.x * blockIdx.x; int stride = blockDim.x * gridDim.x; int num_out = n * num_channels * out_h * out_w; int num_in = n * num_channels * in_h * in_w; for (; index < num_out; index += stride) { int index_tmp = index; int w2 = index_tmp % out_w; index_tmp /= out_w; int h2 = index_tmp % out_h; int nc = index_tmp / out_h; int h1, y_id; T h1lambda, h0lambda; T src_y = ratio_h * (h2 + align_type_value) - align_type_value; PreCalculatorForLinearInterpInputIndex( &h1, &y_id, &h1lambda, &h0lambda, src_y, in_h); int w1, x_id; T w1lambda, w0lambda; T src_x = ratio_w * (w2 + align_type_value) - align_type_value; PreCalculatorForLinearInterpInputIndex( &w1, &x_id, &w1lambda, &w0lambda, src_x, in_w); T d2val = out[index]; paddle::platform::CudaAtomicAdd(in + GetInputIndex(nc, in_h, in_w, h1, w1), h0lambda * w0lambda * d2val); paddle::platform::CudaAtomicAdd( in + GetInputIndex(nc, in_h, in_w, h1, w1 + x_id), h0lambda * w1lambda * d2val); paddle::platform::CudaAtomicAdd( in + GetInputIndex(nc, in_h, in_w, h1 + y_id, w1), h1lambda * w0lambda * d2val); paddle::platform::CudaAtomicAdd( in + GetInputIndex(nc, in_h, in_w, h1 + y_id, w1 + x_id), h1lambda * w1lambda * d2val); } } template __global__ void KeBilinearInterpBw(T* in, const int in_h, const int in_w, const T* __restrict__ out, const int out_h, const int out_w, const int n, const int out_chw, const int num_channels, float ratio_h, float ratio_w, const T align_type_value, funcs::FastDivModForInterpolate divmods) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; int in_chw = in_h * in_w * num_channels; int nthreads = n * out_chw; for (; tid < nthreads; tid += stride) { auto out_id_divmod = divmods.output_w_div.Divmod(tid); int out_id_h = out_id_divmod.val[0]; int out_id_w = out_id_divmod.val[1]; int channel_id = divmods.channels_div.Divmod(tid).val[1]; auto outimg_id_divmod = divmods.output_wc_div.Divmod(out_id_w); int out_img_idy = outimg_id_divmod.val[0]; int out_img_idx = divmods.channels_div.Divmod(outimg_id_divmod.val[1]).val[0]; int in_img_idx, in_img_idy, w_id, h_id; T w1lambda, h1lambda, w2lambda, h2lambda; T src_w = ratio_w * (out_img_idx + align_type_value) - align_type_value; T src_h = ratio_h * (out_img_idy + align_type_value) - align_type_value; PreCalculatorForLinearInterpInputIndex( &in_img_idx, &w_id, &w1lambda, &w2lambda, src_w, in_w); PreCalculatorForLinearInterpInputIndex( &in_img_idy, &h_id, &h1lambda, &h2lambda, src_h, in_h); T value = out[tid]; T* in_pos = &in[out_id_h * in_chw + in_img_idy * in_w * num_channels + in_img_idx * num_channels + channel_id]; paddle::platform::CudaAtomicAdd(&in_pos[0], h2lambda * w2lambda * value); paddle::platform::CudaAtomicAdd(&in_pos[w_id * num_channels], h2lambda * w1lambda * value); paddle::platform::CudaAtomicAdd(&in_pos[h_id * in_w * num_channels], h1lambda * w2lambda * value); paddle::platform::CudaAtomicAdd( &in_pos[h_id * in_w * num_channels + w_id * num_channels], h1lambda * w1lambda * value); } } template __global__ void KeBicubicInterpBw(T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h, const size_t input_w, const T* out, const size_t out_img_h, const size_t out_img_w, const size_t output_h, const size_t output_w, const size_t num_channels, const float ratio_h, const float ratio_w, const bool align_corners, const DataLayout data_layout) { int nthreads = output_h * output_w; int tid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; for (; tid < nthreads; tid += stride) { int out_id_h = tid / output_w; int out_id_w = tid % output_w; int in_img_size = input_w / num_channels; int out_img_size = output_w / num_channels; int channel_id, out_img_idy, out_img_idx; if (data_layout == DataLayout::kNCHW) { channel_id = out_id_w / out_img_size; out_img_idy = (out_id_w % out_img_size) / out_img_w; out_img_idx = tid % out_img_w; } else { out_img_idy = out_id_w / (out_img_w * num_channels); out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels; channel_id = tid % num_channels; } T in_img_idy = align_corners ? static_cast(ratio_h * out_img_idy) : static_cast(ratio_h * (out_img_idy + 0.5) - 0.5); int input_y = floorf(in_img_idy); const T y_t = in_img_idy - input_y; T in_img_idx = align_corners ? static_cast(ratio_w * out_img_idx) : static_cast(ratio_w * (out_img_idx + 0.5) - 0.5); int input_x = floorf(in_img_idx); const T x_t = in_img_idx - input_x; T x_coeffs[4]; T y_coeffs[4]; funcs::get_cubic_upsample_coefficients(x_coeffs, x_t); funcs::get_cubic_upsample_coefficients(y_coeffs, y_t); const T* out_pos = &out[out_id_h * output_w + out_id_w]; T* in_pos; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { int access_y = max(min(static_cast(input_y - 1 + j), static_cast(in_img_h - 1)), 0); int access_x = max(min(static_cast(input_x - 1 + i), static_cast(in_img_w - 1)), 0); if (data_layout == DataLayout::kNCHW) { in_pos = &in[out_id_h * input_w + channel_id * in_img_size + access_y * in_img_w + access_x]; } else { in_pos = &in[out_id_h * input_w + access_y * in_img_w * num_channels + access_x * num_channels + channel_id]; } paddle::platform::CudaAtomicAdd( &in_pos[0], (out_pos[0] * y_coeffs[j] * x_coeffs[i])); } } } } template __global__ void KeTrilinearInterpBw(T* in, const size_t in_img_d, const size_t in_img_h, const size_t in_img_w, const size_t input_h, const size_t input_w, const T* out, const size_t out_img_d, const size_t out_img_h, const size_t out_img_w, const size_t output_h, const size_t output_w, const size_t num_channels, const T ratio_d, const T ratio_h, const T ratio_w, const bool align_corners, const int align_mode, const DataLayout data_layout) { int nthreads = output_h * output_w; int tid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; bool align_flag = (align_mode == 0 && !align_corners); for (; tid < nthreads; tid += stride) { int out_id_h = tid / output_w; int out_id_w = tid % output_w; int in_img_size = input_w / num_channels; int out_img_size = output_w / num_channels; int channel_id, out_img_idt, out_img_idy, out_img_idx; if (data_layout == DataLayout::kNCHW) { channel_id = out_id_w / out_img_size; out_img_idt = (out_id_w % out_img_size) / out_img_h / out_img_w; out_img_idy = ((out_id_w % out_img_size) / out_img_w) % out_img_h; out_img_idx = tid % out_img_w; } else { out_img_idt = out_id_w / (out_img_h * out_img_w * num_channels); out_img_idy = out_id_w % (out_img_h * out_img_w * num_channels) / (out_img_w * num_channels); out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels; channel_id = tid % num_channels; } int in_img_idt = align_flag ? static_cast(ratio_d * (out_img_idt + 0.5) - 0.5) : static_cast(ratio_d * out_img_idt); in_img_idt = (in_img_idt > 0) ? in_img_idt : 0; int d_id = (in_img_idt < in_img_d - 1) ? 1 : 0; T src_d = ratio_d * (out_img_idt + 0.5) - 0.5; src_d = (src_d > 0) ? src_d : 0; T d1lambda = align_flag ? src_d - in_img_idt : ratio_d * out_img_idt - in_img_idt; T d2lambda = 1.f - d1lambda; int in_img_idy = align_flag ? static_cast(ratio_h * (out_img_idy + 0.5) - 0.5) : static_cast(ratio_h * out_img_idy); in_img_idy = (in_img_idy > 0) ? in_img_idy : 0; int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0; T src_h = ratio_h * (out_img_idy + 0.5) - 0.5; src_h = (src_h > 0) ? src_h : 0; T h1lambda = align_flag ? src_h - in_img_idy : ratio_h * out_img_idy - in_img_idy; T h2lambda = 1.f - h1lambda; int in_img_idx = align_flag ? static_cast(ratio_w * (out_img_idx + 0.5) - 0.5) : static_cast(ratio_w * out_img_idx); in_img_idx = (in_img_idx > 0) ? in_img_idx : 0; int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0; T src_w = ratio_w * (out_img_idx + 0.5) - 0.5; src_w = (src_w > 0) ? src_w : 0; T w1lambda = align_flag ? src_w - in_img_idx : ratio_w * out_img_idx - in_img_idx; T w2lambda = 1.f - w1lambda; if (data_layout == DataLayout::kNCHW) { int in_pos1_idx = out_id_h * input_w + channel_id * in_img_size + (in_img_idt * in_img_h + in_img_idy) * in_img_w + in_img_idx; T* in_pos1 = &in[in_pos1_idx]; int in_pos2_idx = in_pos1_idx + d_id * in_img_h * in_img_w; T* in_pos2 = &in[in_pos2_idx]; const T* out_pos = &out[out_id_h * output_w + out_id_w]; // trilinear interpolation grad paddle::platform::CudaAtomicAdd( &in_pos1[0], d2lambda * h2lambda * w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos1[w_id], d2lambda * h2lambda * w1lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos1[h_id * in_img_w], d2lambda * h1lambda * w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos1[h_id * in_img_w + w_id], d2lambda * h1lambda * w1lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos2[0], d1lambda * h2lambda * w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos2[w_id], d1lambda * h2lambda * w1lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos2[h_id * in_img_w], d1lambda * h1lambda * w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos2[h_id * in_img_w + w_id], d1lambda * h1lambda * w1lambda * out_pos[0]); } else { int in_pos1_idx = out_id_h * input_w + in_img_idt * in_img_h * in_img_w * num_channels + in_img_idy * in_img_w * num_channels + in_img_idx * num_channels + channel_id; T* in_pos1 = &in[in_pos1_idx]; int in_pos2_idx = in_pos1_idx + d_id * in_img_h * in_img_w * num_channels; T* in_pos2 = &in[in_pos2_idx]; const T* out_pos = &out[out_id_h * output_w + out_id_w]; // trilinear interpolation grad paddle::platform::CudaAtomicAdd( &in_pos1[0], d2lambda * h2lambda * w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos1[w_id * num_channels], d2lambda * h2lambda * w1lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos1[h_id * in_img_w * num_channels], d2lambda * h1lambda * w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos1[h_id * in_img_w * num_channels + w_id * num_channels], d2lambda * h1lambda * w1lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos2[0], d1lambda * h2lambda * w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos2[w_id * num_channels], d1lambda * h2lambda * w1lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos2[h_id * in_img_w * num_channels], d1lambda * h1lambda * w2lambda * out_pos[0]); paddle::platform::CudaAtomicAdd( &in_pos2[h_id * in_img_w * num_channels + w_id * num_channels], d1lambda * h1lambda * w1lambda * out_pos[0]); } } } template __global__ void KeNearestNeighbor3DInterpBw(T* in, const size_t in_img_d, const size_t in_img_h, const size_t in_img_w, const size_t input_h, const size_t input_w, const T* out, const size_t out_img_d, const size_t out_img_h, const size_t out_img_w, const size_t output_h, const size_t output_w, const size_t num_channels, const float ratio_d, const float ratio_h, const float ratio_w, const bool align_corners, const DataLayout data_layout) { int nthreads = output_h * output_w; int tid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; for (; tid < nthreads; tid += stride) { int out_id_h = tid / output_w; int out_id_w = tid % output_w; int in_img_size = input_w / num_channels; int out_img_size = output_w / num_channels; int channel_id, out_img_idt, out_img_idy, out_img_idx; if (data_layout == DataLayout::kNCHW) { channel_id = out_id_w / out_img_size; out_img_idt = (out_id_w % out_img_size) / out_img_h / out_img_w; out_img_idy = ((out_id_w % out_img_size) / out_img_w) % out_img_h; out_img_idx = tid % out_img_w; } else { out_img_idt = out_id_w / (out_img_h * out_img_w * num_channels); out_img_idy = out_id_w % (out_img_h * out_img_w * num_channels) / (out_img_w * num_channels); out_img_idx = out_id_w % (out_img_w * num_channels) / num_channels; channel_id = tid % num_channels; } int in_img_idt = (align_corners) ? static_cast(ratio_d * out_img_idt + 0.5) : static_cast(ratio_d * out_img_idt); int in_img_idy = (align_corners) ? static_cast(ratio_h * out_img_idy + 0.5) : static_cast(ratio_h * out_img_idy); int in_img_idx = (align_corners) ? static_cast(ratio_w * out_img_idx + 0.5) : static_cast(ratio_w * out_img_idx); T* in_pos; if (data_layout == DataLayout::kNCHW) { in_pos = &in[out_id_h * input_w + channel_id * in_img_size + in_img_idt * in_img_h * in_img_w + in_img_idy * in_img_w + in_img_idx]; } else { in_pos = &in[out_id_h * input_w + in_img_idt * in_img_h * in_img_w * num_channels + in_img_idy * in_img_w * num_channels + in_img_idx * num_channels + channel_id]; } const T out_pos = out[out_id_h * output_w + out_id_w]; paddle::platform::CudaAtomicAdd(in_pos, out_pos); } } template static void Interpolate1DCUDABwd( const Context& dev_ctx, const DenseTensor& input, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const DenseTensor& output_grad, const std::string& data_layout_str, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* input_grad) { const DataLayout data_layout = paddle::framework::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; funcs::ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); float scale_w = -1; if (scale_tensor) { auto scale_data = funcs::get_new_data_from_tensor(scale_tensor.get_ptr()); scale_w = scale_data[0]; PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); } else { if (scale.size() > 0) { scale_w = scale[0]; PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); } } if (scale_w > 0.) { out_w = static_cast(in_w * scale_w); } if (out_size) { DenseTensor sizes; paddle::framework::TensorCopySync( *out_size, paddle::platform::CPUPlace(), &sizes); auto size_data = sizes.data(); out_w = size_data[0]; } if (size_tensor && size_tensor->size() > 0) { // have size tensor auto new_size = funcs::get_new_shape(size_tensor.get()); out_w = new_size[0]; } auto* output_grad_data = output_grad.data(); phi::DDim dim_grad; if (data_layout == DataLayout::kNCHW) { dim_grad = {n, c, in_w}; } else { dim_grad = {n, in_w, c}; } input_grad->Resize(dim_grad); auto* input_grad_data = dev_ctx.template Alloc(input_grad); phi::funcs::SetConstant zero; zero(dev_ctx, input_grad, static_cast(0.0)); if (in_w == out_w) { paddle::framework::TensorCopy(output_grad, dev_ctx.GetPlace(), input_grad); return; } float ratio_w = 0.f; if (out_w > 1) { float new_scale_w = 0.f; new_scale_w = (scale_w > 0) ? static_cast(1. / scale_w) : static_cast(in_w) / out_w; ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(new_scale_w); } int64_t in_cw = c * in_w; int64_t out_cw = c * out_w; auto pixelNum = n * out_cw; backends::gpu::GpuLaunchConfig config = backends::gpu::GetGpuLaunchConfig1D(dev_ctx, pixelNum); if ("linear" == interp_method) { KeLinearInterpBw<<>>(input_grad_data, in_w, in_cw, output_grad_data, out_w, n, out_cw, c, ratio_w, align_corners, align_mode, data_layout); } } template static void Interpolate2DCUDABwd( const Context& dev_ctx, const DenseTensor& input, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const DenseTensor& output_grad, const std::string& data_layout_str, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* input_grad) { const DataLayout data_layout = paddle::framework::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; funcs::ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); float scale_h = -1; float scale_w = -1; if (scale_tensor) { auto scale_data = funcs::get_new_data_from_tensor(scale_tensor.get_ptr()); if (scale_data.size() > 1) { scale_h = scale_data[0]; scale_w = scale_data[1]; } else { scale_h = scale_data[0]; scale_w = scale_data[0]; } PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); PADDLE_ENFORCE_EQ( scale_h > 0, true, errors::InvalidArgument( "The scale_h in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_h)); } else { if (scale.size() > 1) { scale_w = scale[1]; scale_h = scale[0]; PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); PADDLE_ENFORCE_EQ( scale_h > 0, true, errors::InvalidArgument( "The scale_h in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_h)); } } if (scale_w > 0. && scale_h > 0.) { out_h = static_cast(in_h * scale_h); out_w = static_cast(in_w * scale_w); } if (out_size) { DenseTensor sizes; paddle::framework::TensorCopySync( *out_size, paddle::platform::CPUPlace(), &sizes); auto size_data = sizes.data(); out_h = size_data[0]; out_w = size_data[1]; } if (size_tensor && size_tensor->size() > 0) { // have size tensor auto new_size = funcs::get_new_shape(size_tensor.get()); out_h = new_size[0]; out_w = new_size[1]; } auto* output_grad_data = output_grad.data(); phi::DDim dim_grad; if (data_layout == DataLayout::kNCHW) { dim_grad = {n, c, in_h, in_w}; } else { dim_grad = {n, in_h, in_w, c}; } input_grad->Resize(dim_grad); auto* input_grad_data = dev_ctx.template Alloc(input_grad); phi::funcs::SetConstant zero; zero(dev_ctx, input_grad, static_cast(0.0)); if (in_h == out_h && in_w == out_w) { paddle::framework::TensorCopy(output_grad, dev_ctx.GetPlace(), input_grad); return; } float ratio_h = 0.f; float ratio_w = 0.f; if (out_h > 1) { float new_scale_h = 0.f; new_scale_h = (scale_h > 0) ? static_cast(1. / scale_h) : static_cast(in_h) / out_h; ratio_h = (align_corners) ? static_cast(in_h - 1) / (out_h - 1) : static_cast(new_scale_h); } if (out_w > 1) { float new_scale_w = 0.f; new_scale_w = (scale_w > 0) ? static_cast(1. / scale_w) : static_cast(in_w) / out_w; ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(new_scale_w); } int64_t in_hw = in_h * in_w; int64_t out_hw = out_h * out_w; int64_t in_chw = c * in_hw; int64_t out_chw = c * out_hw; auto pixelNum = n * out_chw; backends::gpu::GpuLaunchConfig config = backends::gpu::GetGpuLaunchConfig1D(dev_ctx, pixelNum); if ("nearest" == interp_method) { if (data_layout == DataLayout::kNCHW) { // get launch 3D config int nc = n * c; backends::gpu::GpuLaunchConfig config_3d = backends::gpu::GetGpuLaunchConfig3D(dev_ctx, nc, out_h, out_w); KeNearestNeighborInterpNCHWBw<<>>(input_grad_data, in_h, in_w, output_grad_data, out_h, out_w, nc, ratio_h, ratio_w, align_corners); } else { int64_t cw = c * out_w; auto interp_divmods = funcs::FastDivModForInterpolate(c, out_chw, cw); KeNearestNeighborInterpBw<<>>(input_grad_data, in_h, in_w, n, in_chw, output_grad_data, out_h, out_w, n, out_chw, c, ratio_h, ratio_w, align_corners, interp_divmods); } } else if ("bilinear" == interp_method) { const T align_type_value = (align_mode == 0 && !align_corners) ? 0.5f : 0; bool is_nchw = (data_layout == DataLayout::kNCHW) ? true : false; bool optimize_flag = false; #ifndef __HIPCC__ optimize_flag = (in_h < (out_h >> 6) && in_w < (out_w >> 6)) ? true : ((in_h == 1 && in_w == 1) ? true : false); #endif if (optimize_flag & is_nchw) { KeBilinearInterpBwShareMemory<<>>(input_grad_data, in_h, in_w, output_grad_data, out_h, out_w, n, c, ratio_h, ratio_w, align_type_value, is_nchw); } else if (!optimize_flag & is_nchw) { const int num_kernels = n * c * out_h * out_w; const int num_threads = std::min(dev_ctx.GetMaxThreadsPerBlock(), 1024); KeBilinearInterpNCHWBw< T><<>>(input_grad_data, in_h, in_w, out_h, out_w, n, c, ratio_h, ratio_w, output_grad_data, align_type_value); } else { int64_t cw = c * out_w; auto interp_divmods = funcs::FastDivModForInterpolate(c, out_chw, cw); KeBilinearInterpBw<<>>(input_grad_data, in_h, in_w, output_grad_data, out_h, out_w, n, out_chw, c, ratio_h, ratio_w, align_type_value, interp_divmods); } } else if ("bicubic" == interp_method) { #ifdef __HIPCC__ constexpr int thread_per_block = 256; #else constexpr int thread_per_block = 512; #endif KeBicubicInterpBw< T><<>>( input_grad_data, in_h, in_w, n, in_chw, output_grad_data, out_h, out_w, n, out_chw, c, ratio_h, ratio_w, align_corners, data_layout); } } template static void Interpolate3DCUDABwd( const Context& dev_ctx, const DenseTensor& input, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const DenseTensor& output_grad, const std::string& data_layout_str, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* input_grad) { const DataLayout data_layout = paddle::framework::StringToDataLayout(data_layout_str); int n, c, in_d, in_h, in_w; funcs::ExtractNCDWH(input.dims(), data_layout, &n, &c, &in_d, &in_h, &in_w); float scale_d = -1; float scale_h = -1; float scale_w = -1; if (scale_tensor) { auto scale_data = funcs::get_new_data_from_tensor(scale_tensor.get_ptr()); if (scale_data.size() > 1) { scale_d = scale_data[0]; scale_h = scale_data[1]; scale_w = scale_data[2]; } else { scale_d = scale_data[0]; scale_h = scale_data[0]; scale_w = scale_data[0]; } PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); PADDLE_ENFORCE_EQ( scale_h > 0, true, errors::InvalidArgument( "The scale_h in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_h)); PADDLE_ENFORCE_EQ( scale_d > 0, true, errors::InvalidArgument( "The scale_d in input 'Scale' Tensor of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_d)); } else { if (scale.size() > 1) { scale_d = scale[0]; scale_h = scale[1]; scale_w = scale[2]; PADDLE_ENFORCE_EQ( scale_w > 0, true, errors::InvalidArgument( "The scale_w in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_w)); PADDLE_ENFORCE_EQ( scale_h > 0, true, errors::InvalidArgument( "The scale_h in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_h)); PADDLE_ENFORCE_EQ( scale_d > 0, true, errors::InvalidArgument( "The scale_d in Attr(scale) of Operator(interpolate) " "should be greater than 0, but received value is %d.", scale_d)); } } if (scale_d > 0. && scale_h > 0. && scale_w > 0.) { out_d = static_cast(in_d * scale_d); out_h = static_cast(in_h * scale_h); out_w = static_cast(in_w * scale_w); } if (out_size) { DenseTensor sizes; paddle::framework::TensorCopySync( *out_size, paddle::platform::CPUPlace(), &sizes); auto size_data = sizes.data(); out_d = size_data[0]; out_h = size_data[1]; out_w = size_data[2]; } if (size_tensor && size_tensor->size() > 0) { // have size tensor auto new_size = funcs::get_new_shape(size_tensor.get()); out_d = new_size[0]; out_h = new_size[1]; out_w = new_size[2]; } auto* output_grad_data = output_grad.data(); phi::DDim dim_grad; if (data_layout == DataLayout::kNCHW) { dim_grad = {n, c, in_d, in_h, in_w}; } else { dim_grad = {n, in_d, in_h, in_w, c}; } input_grad->Resize(dim_grad); auto* input_grad_data = dev_ctx.template Alloc(input_grad); phi::funcs::SetConstant zero; zero(dev_ctx, input_grad, static_cast(0.0)); if (in_d == out_d && in_h == out_h && in_w == out_w) { paddle::framework::TensorCopy(output_grad, dev_ctx.GetPlace(), input_grad); return; } float ratio_d = 0.f; float ratio_h = 0.f; float ratio_w = 0.f; if (out_d > 1) { float new_scale_d = 0.f; new_scale_d = (scale_d > 0) ? static_cast(1. / scale_d) : static_cast(in_d) / out_d; ratio_d = (align_corners) ? static_cast(in_d - 1) / (out_d - 1) : static_cast(new_scale_d); } if (out_h > 1) { float new_scale_h = 0.f; new_scale_h = (scale_h > 0) ? static_cast(1. / scale_h) : static_cast(in_h) / out_h; ratio_h = (align_corners) ? static_cast(in_h - 1) / (out_h - 1) : static_cast(new_scale_h); } if (out_w > 1) { float new_scale_w = 0.f; new_scale_w = (scale_w > 0) ? static_cast(1. / scale_w) : static_cast(in_w) / out_w; ratio_w = (align_corners) ? static_cast(in_w - 1) / (out_w - 1) : static_cast(new_scale_w); } int64_t in_dhw = in_d * in_h * in_w; int64_t out_dhw = out_d * out_h * out_w; int64_t in_cdhw = c * in_dhw; int64_t out_cdhw = c * out_dhw; auto pixelNum = n * out_cdhw; backends::gpu::GpuLaunchConfig config = backends::gpu::GetGpuLaunchConfig1D(dev_ctx, pixelNum); if ("trilinear" == interp_method) { KeTrilinearInterpBw<<>>(input_grad_data, in_d, in_h, in_w, n, in_cdhw, output_grad_data, out_d, out_h, out_w, n, out_cdhw, c, ratio_d, ratio_h, ratio_w, align_corners, align_mode, data_layout); } else if ("nearest" == interp_method) { KeNearestNeighbor3DInterpBw<<>>(input_grad_data, in_d, in_h, in_w, n, in_cdhw, output_grad_data, out_d, out_h, out_w, n, out_cdhw, c, ratio_d, ratio_h, ratio_w, align_corners, data_layout); } } template void InterpolateGradKernel( const Context& dev_ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const DenseTensor& output_grad, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* x_grad) { auto output_grad_dims = output_grad.dims(); if (output_grad_dims.size() == 3) { // 1D interpolation grad Interpolate1DCUDABwd(dev_ctx, x, out_size, size_tensor, scale_tensor, output_grad, data_layout, out_w, scale, interp_method, align_corners, align_mode, x_grad); } else if (output_grad_dims.size() == 4) { // 2D interpolation grad Interpolate2DCUDABwd(dev_ctx, x, out_size, size_tensor, scale_tensor, output_grad, data_layout, out_h, out_w, scale, interp_method, align_corners, align_mode, x_grad); } else if (output_grad_dims.size() == 5) { // 3D interpolation grad Interpolate3DCUDABwd(dev_ctx, x, out_size, size_tensor, scale_tensor, output_grad, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, x_grad); } } template void BilinearInterpGradKernel( const Context& dev_ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const DenseTensor& out_grad, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* x_grad) { InterpolateGradKernel(dev_ctx, x, out_size, size_tensor, scale_tensor, out_grad, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, x_grad); } template void NearestInterpGradKernel( const Context& dev_ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const DenseTensor& out_grad, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* x_grad) { InterpolateGradKernel(dev_ctx, x, out_size, size_tensor, scale_tensor, out_grad, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, x_grad); } template void TrilinearInterpGradKernel( const Context& dev_ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const DenseTensor& out_grad, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* x_grad) { InterpolateGradKernel(dev_ctx, x, out_size, size_tensor, scale_tensor, out_grad, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, x_grad); } template void LinearInterpGradKernel( const Context& dev_ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const DenseTensor& out_grad, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* x_grad) { InterpolateGradKernel(dev_ctx, x, out_size, size_tensor, scale_tensor, out_grad, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, x_grad); } template void BicubicInterpGradKernel( const Context& dev_ctx, const DenseTensor& x, const paddle::optional& out_size, const paddle::optional>& size_tensor, const paddle::optional& scale_tensor, const DenseTensor& out_grad, const std::string& data_layout, int out_d, int out_h, int out_w, const std::vector& scale, const std::string& interp_method, bool align_corners, int align_mode, DenseTensor* x_grad) { InterpolateGradKernel(dev_ctx, x, out_size, size_tensor, scale_tensor, out_grad, data_layout, out_d, out_h, out_w, scale, interp_method, align_corners, align_mode, x_grad); } } // namespace phi PD_REGISTER_KERNEL(bilinear_interp_v2_grad, GPU, ALL_LAYOUT, phi::BilinearInterpGradKernel, float, double) {} PD_REGISTER_KERNEL(nearest_interp_v2_grad, GPU, ALL_LAYOUT, phi::NearestInterpGradKernel, float, double) {} PD_REGISTER_KERNEL(trilinear_interp_v2_grad, GPU, ALL_LAYOUT, phi::TrilinearInterpGradKernel, float, double) {} PD_REGISTER_KERNEL(linear_interp_v2_grad, GPU, ALL_LAYOUT, phi::LinearInterpGradKernel, float, double) {} PD_REGISTER_KERNEL(bicubic_interp_v2_grad, GPU, ALL_LAYOUT, phi::BicubicInterpGradKernel, float, double) {}