// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "cinn/hlir/framework/graph_compiler.h" #include "cinn/hlir/framework/instruction.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h" #include "paddle/fluid/framework/paddle2cinn/transform_type.h" #include "paddle/fluid/operators/cinn/cinn_launch_context.h" #include "paddle/fluid/operators/cinn/cinn_op_helper.h" namespace paddle::operators { using CinnInstruction = ::cinn::hlir::framework::Instruction; using CinnCompiledObject = framework::paddle2cinn::CinnCompiledObject; using CinnCompiler = framework::paddle2cinn::CinnCompiler; template class CinnInstructionRunOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { // step 1: fetch the cinn instruction bound to this operator auto cached_index = ctx.template Attr(kCachedIndex); auto ins_index = ctx.template Attr(kInstructionIndex); const CinnCompiledObject& compiled_object = CinnCompiler::GetInstance()->GetCompiledObject(cached_index); const std::vector>& instructions = compiled_object.runtime_program->GetRunInstructions(); PADDLE_ENFORCE_LT(ins_index, instructions.size(), platform::errors::InvalidArgument( "Index(%ld) > instructions.size(%ld).", ins_index, instructions.size())); auto&& instruction = instructions.at(ins_index); // step 2: prepare the input and output arguments of the instruction details::CinnLaunchContext* launch_context = compiled_object.launch_context.get(); auto share_argument_buffer_fn = [launch_context, &ctx](const std::string& var_name) { cinn_buffer_t* buffer = launch_context->GetCinnBufferOfVar(var_name); framework::Variable* var = ctx.scope().GetVar(var_name); auto* tensor = var->template GetMutable(); buffer->memory = reinterpret_cast(tensor->mutable_data( ctx.GetPlace(), framework::paddle2cinn::TransToPaddleDataType(buffer->type))); }; std::vector in_args = ctx.InputNames(kX); std::for_each(in_args.begin(), in_args.end(), share_argument_buffer_fn); std::vector out_args = ctx.OutputNames(kOutputs); std::for_each(out_args.begin(), out_args.end(), share_argument_buffer_fn); // step 3: launch CINN runtime to execute the instruction // TODO(CtfGo): simplify format of arguments package as a vector in CINN // and update this usage call instruction->Run(&launch_context->FinalizeArguments(), false, details::GetStream(ctx)); } }; } // namespace paddle::operators