# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest class TestIndexSampleOp(OpTest): def setUp(self): self.op_type = "index_sample" self.config() xnp = np.random.random(self.x_shape).astype(self.x_type) indexnp = np.random.randint( low=0, high=self.x_shape[1], size=self.index_shape).astype(self.index_type) self.inputs = {'X': xnp, 'Index': indexnp} index_array = [] for i in range(self.index_shape[0]): for j in indexnp[i]: index_array.append(xnp[i, j]) index_array = np.array(index_array).astype(self.x_type) out = np.reshape(index_array, self.index_shape) self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def config(self): """ For multi-dimension input """ self.x_shape = (10, 20) self.x_type = "float64" self.index_shape = (10, 10) self.index_type = "int32" class TestCase1(TestIndexSampleOp): def config(self): """ For one dimension input """ self.x_shape = (100, 1) self.x_type = "float64" self.index_shape = (100, 1) self.index_type = "int32" class TestCase2(TestIndexSampleOp): def config(self): """ For int64_t index type """ self.x_shape = (10, 100) self.x_type = "float64" self.index_shape = (10, 10) self.index_type = "int64" class TestCase3(TestIndexSampleOp): def config(self): """ For int index type """ self.x_shape = (10, 100) self.x_type = "float64" self.index_shape = (10, 10) self.index_type = "int32" class TestCase4(TestIndexSampleOp): def config(self): """ For int64 index type """ self.x_shape = (10, 100) self.x_type = "float64" self.index_shape = (10, 10) self.index_type = "int64" class TestIndexSampleShape(unittest.TestCase): def test_shape(self): import paddle.fluid as fluid import paddle # create x value x_shape = (2, 5) x_type = "float64" x_np = np.random.random(x_shape).astype(x_type) # create index value index_shape = (2, 3) index_type = "int32" index_np = np.random.randint( low=0, high=x_shape[1], size=index_shape).astype(index_type) x = fluid.data(name='x', shape=[-1, 5], dtype='float64') index = fluid.data(name='index', shape=[-1, 3], dtype='int32') output = fluid.layers.index_sample(x=x, index=index) place = fluid.CPUPlace() exe = fluid.Executor(place=place) exe.run(fluid.default_startup_program()) feed = {'x': x_np, 'index': index_np} res = exe.run(feed=feed, fetch_list=[output]) if __name__ == "__main__": unittest.main()