// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/gather_op_handle.h" namespace paddle { namespace framework { namespace details { GatherOpHandle::GatherOpHandle(const std::vector &local_scopes, const std::vector &places) : local_scopes_(local_scopes), places_(places) {} void GatherOpHandle::RunImpl() { // the input may have dummy var. std::vector in_var_handles; for (auto *in : inputs_) { auto *in_handle = dynamic_cast(in); if (in_handle) { in_var_handles.push_back(in_handle); } } PADDLE_ENFORCE_EQ( in_var_handles.size(), places_.size(), "The number of output should equal to the number of places."); // the output may have dummy var. std::vector out_var_handles; for (auto *out : outputs_) { auto *out_handle = dynamic_cast(out); if (out_handle) { out_var_handles.push_back(out_handle); } } PADDLE_ENFORCE_EQ(out_var_handles.size(), 1, "The number of output should be one."); auto in_0_handle = static_cast(in_var_handles[0]); auto pre_in_var = local_scopes_[in_0_handle->scope_idx_]->FindVar(in_0_handle->name_); auto pre_place = in_0_handle->place_; PADDLE_ENFORCE(pre_in_var->IsType(), "Currently, gather_op only can gather SelectedRows."); PADDLE_ENFORCE_EQ(out_var_handles[0]->place_.which(), pre_place.which(), "The place of input and output should be the same."); // Wait input done, this Wait is asynchronous operation for (auto *in : in_var_handles) { if (in->generated_op_) { in->generated_op_->Wait(dev_ctxes_[in->place_]); } } std::vector out_rows; std::vector in_tensors; std::vector in_places; auto &pre_in = pre_in_var->Get(); // gather the inputs for (auto *in : in_var_handles) { auto in_handle = static_cast(in); auto in_p = in_handle->place_; in_places.push_back(in_p); PADDLE_ENFORCE_EQ(in_p.which(), pre_place.which(), "Places must be all on CPU or all on CUDA."); auto in_var = local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_); auto &in_sr = in_var->Get(); PADDLE_ENFORCE_EQ(in_sr.value().type(), pre_in.value().type(), "The type of input is not consistent."); PADDLE_ENFORCE_EQ(pre_in.height(), in_sr.height(), "The height of inputs is not consistent."); PADDLE_ENFORCE_EQ(pre_in.GetCompleteDims(), in_sr.GetCompleteDims(), "The dims of inputs is not consistent."); auto in_sr_rows = in_sr.rows(); out_rows.insert(out_rows.end(), in_sr_rows.begin(), in_sr_rows.end()); in_tensors.emplace_back(in_sr.value()); } // write the output auto &out_place = out_var_handles[0]->place_; auto out_scope_idx = out_var_handles[0]->scope_idx_; auto out_var = local_scopes_[out_scope_idx]->FindVar(out_var_handles[0]->name_); auto out = out_var->GetMutable(); out->set_height(pre_in.height()); out->set_rows(out_rows); size_t rows = out_rows.size(); DDim out_dim = pre_in.GetCompleteDims(); out_dim[0] = static_cast(rows); out->mutable_value()->Resize(out_dim); out->mutable_value()->mutable_data(out_place, pre_in.value().type()); Tensor *out_tensor = out->mutable_value(); // copy auto dev_ctx = dev_ctxes_[out_place]; RunAndRecordEvent(out_place, [in_tensors, out_var, dev_ctx, out_place] { int s = 0, e = 0; for (size_t j = 0; j < in_tensors.size(); ++j) { e += in_tensors[j].dims()[0]; auto sub_out = out_tensor->Slice(s, e); paddle::framework::TensorCopy(in_tensors[j], out_place, *(dev_ctx), &sub_out); s = e; } }); } std::string GatherOpHandle::Name() const { return "gather"; } } // namespace details } // namespace framework } // namespace paddle