// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/funcs/strided_slice.h" #include "paddle/phi/kernels/strided_slice_grad_kernel.h" namespace phi { template void StridedSliceRawGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, const std::vector& axes, const IntArray& starts, const IntArray& ends, const IntArray& strides, const std::vector& infer_flags, const std::vector& decrease_axis, DenseTensor* x_grad) { int rank = x.dims().size(); #define SLICE_CASE(Rank) \ case Rank: \ funcs::StridedSliceGradCompute(dev_ctx, \ x, \ out_grad, \ axes, \ starts, \ ends, \ strides, \ infer_flags, \ decrease_axis, \ x_grad); \ break; switch (rank) { SLICE_CASE(1) SLICE_CASE(2) SLICE_CASE(3) SLICE_CASE(4) SLICE_CASE(5) SLICE_CASE(6) } #undef SLICE_CASE } template void StridedSliceArrayGradKernel(const Context& dev_ctx, const TensorArray& x, const TensorArray& out_grad, const std::vector& axes, const IntArray& starts, const IntArray& ends, const IntArray& strides, const std::vector& infer_flags, const std::vector& decrease_axis, TensorArray* x_grad) { funcs::StridedSliceGradCompute(dev_ctx, x, out_grad, axes, starts, ends, strides, infer_flags, decrease_axis, x_grad); } } // namespace phi