import unittest import numpy as np import sys import collections import math from op_test import OpTest class TestDetectionMAPOp(OpTest): def set_data(self): self.init_test_case() self.mAP = [self.calc_map(self.tf_pos)] self.label = np.array(self.label).astype('float32') self.detect = np.array(self.detect).astype('float32') self.mAP = np.array(self.mAP).astype('float32') self.inputs = { 'Label': (self.label, self.label_lod), 'Detect': self.detect } self.attrs = { 'overlap_threshold': self.overlap_threshold, 'evaluate_difficult': self.evaluate_difficult, 'ap_type': self.ap_type } self.outputs = {'MAP': self.mAP} def init_test_case(self): self.overlap_threshold = 0.3 self.evaluate_difficult = True self.ap_type = "Integral" self.label_lod = [[0, 2, 4]] # label xmin ymin xmax ymax difficult self.label = [[1, 0.1, 0.1, 0.3, 0.3, 0], [1, 0.6, 0.6, 0.8, 0.8, 1], [2, 0.3, 0.3, 0.6, 0.5, 0], [1, 0.7, 0.1, 0.9, 0.3, 0]] # image_id label score xmin ymin xmax ymax difficult self.detect = [ [0, 1, 0.3, 0.1, 0.0, 0.4, 0.3], [0, 1, 0.7, 0.0, 0.1, 0.2, 0.3], [0, 1, 0.9, 0.7, 0.6, 0.8, 0.8], [1, 2, 0.8, 0.2, 0.1, 0.4, 0.4], [1, 2, 0.1, 0.4, 0.3, 0.7, 0.5], [1, 1, 0.2, 0.8, 0.1, 1.0, 0.3], [1, 3, 0.2, 0.8, 0.1, 1.0, 0.3] ] # image_id label score false_pos false_pos # [-1, 1, 3, -1, -1], # [-1, 2, 1, -1, -1] self.tf_pos = [[0, 1, 0.9, 1, 0], [0, 1, 0.7, 1, 0], [0, 1, 0.3, 0, 1], [1, 1, 0.2, 1, 0], [1, 2, 0.8, 0, 1], [1, 2, 0.1, 1, 0], [1, 3, 0.2, 0, 1]] def calc_map(self, tf_pos): mAP = 0.0 count = 0 class_pos_count = {} true_pos = {} false_pos = {} def get_accumulation(pos_list): sorted_list = sorted(pos_list, key=lambda pos: pos[0], reverse=True) sum = 0 accu_list = [] for (score, count) in sorted_list: sum += count accu_list.append(sum) return accu_list label_count = collections.Counter() for (label, xmin, ymin, xmax, ymax, difficult) in self.label: if self.evaluate_difficult: label_count[label] += 1 elif not difficult: label_count[label] += 1 true_pos = collections.defaultdict(list) false_pos = collections.defaultdict(list) for (image_id, label, score, tp, fp) in tf_pos: true_pos[label].append([score, tp]) false_pos[label].append([score, fp]) for (label, label_pos_num) in label_count.items(): if label_pos_num == 0 or label not in true_pos: continue label_true_pos = true_pos[label] label_false_pos = false_pos[label] accu_tp_sum = get_accumulation(label_true_pos) accu_fp_sum = get_accumulation(label_false_pos) precision = [] recall = [] for i in range(len(accu_tp_sum)): precision.append( float(accu_tp_sum[i]) / float(accu_tp_sum[i] + accu_fp_sum[i])) recall.append(float(accu_tp_sum[i]) / label_pos_num) if self.ap_type == "11point": max_precisions = [11.0, 0.0] start_idx = len(accu_tp_sum) - 1 for j in range(10, 0, -1): for i in range(start_idx, 0, -1): if recall[i] < j / 10.0: start_idx = i if j > 0: max_precisions[j - 1] = max_precisions[j] break else: if max_precisions[j] < accu_precision[i]: max_precisions[j] = accu_precision[i] for j in range(10, 0, -1): mAP += max_precisions[j] / 11 count += 1 elif self.ap_type == "Integral": average_precisions = 0.0 prev_recall = 0.0 for i in range(len(accu_tp_sum)): if math.fabs(recall[i] - prev_recall) > 1e-6: average_precisions += precision[i] * \ math.fabs(recall[i] - prev_recall) prev_recall = recall[i] mAP += average_precisions count += 1 if count != 0: mAP /= count return mAP * 100.0 def setUp(self): self.op_type = "detection_map" self.set_data() def test_check_output(self): self.check_output() class TestDetectionMAPOpSkipDiff(TestDetectionMAPOp): def init_test_case(self): super(TestDetectionMAPOpSkipDiff, self).init_test_case() self.evaluate_difficult = False self.tf_pos = [[0, 1, 0.7, 1, 0], [0, 1, 0.3, 0, 1], [1, 1, 0.2, 1, 0], [1, 2, 0.8, 0, 1], [1, 2, 0.1, 1, 0], [1, 3, 0.2, 0, 1]] if __name__ == '__main__': unittest.main()