/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/op_registry.h" #include "paddle/operators/cross_entropy_op.h" #include "paddle/platform/assert.h" #include "paddle/platform/hostdevice.h" namespace paddle { namespace operators { template __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label, const int N, const int D) { // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file. // CUDA_1D_KERNEL_LOOP(i, N) { for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += blockDim.x * gridDim.x) { PADDLE_ASSERT(label[i] >= 0 && label[i] < D); Y[i] = -TolerableValue()(log(X[i * D + label[i]])); } } template __device__ __forceinline__ T sum_single_warp(T val) { val += __shfl_down(val, 16); val += __shfl_down(val, 8); val += __shfl_down(val, 4); val += __shfl_down(val, 2); val += __shfl_down(val, 1); return val; } // This kernel is called when the class number is less than or equal to 512. template __global__ void SoftCrossEntropyKernel1(T* Y, const T* X, const T* label, const int class_num) { int tid = threadIdx.x; extern __shared__ T d_sum[]; d_sum[tid] = 0; int cur_idx = tid; int next_idx = blockIdx.x * class_num + tid; while (cur_idx < class_num) { d_sum[tid] += TolerableValue()(std::log(X[next_idx])) * label[next_idx]; next_idx += blockDim.x; cur_idx += blockDim.x; } __syncthreads(); for (unsigned int stride = blockDim.x >> 1; stride >= 32; stride >>= 1) { if (tid < stride) d_sum[tid] += d_sum[tid + stride]; __syncthreads(); } T val = d_sum[tid]; val = sum_single_warp(val); if (tid == 0) Y[blockIdx.x] = -val; } // This kernel is called when the class number is larger than 512. template __global__ void SoftCrossEntropyKernel2(T* Y, const T* X, const T* label, const int class_num) { int tid = threadIdx.x; __shared__ T d_sum[BlockSize]; int next_idx = blockIdx.x * class_num + tid; d_sum[tid] = 0; int cur_idx = tid; while (cur_idx < class_num) { d_sum[tid] += TolerableValue()(std::log(X[next_idx])) * label[next_idx]; next_idx += BlockSize; cur_idx += BlockSize; } __syncthreads(); for (unsigned int stride = BlockSize >> 1; stride >= 32; stride >>= 1) { if (tid < stride) d_sum[tid] += d_sum[tid + stride]; __syncthreads(); } T val = d_sum[tid]; val = sum_single_warp(val); if (tid == 0) Y[blockIdx.x] = -val; } // TODO(qingqing): make zero setting a common function. template __global__ void zero(T* X, const int N) { for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += blockDim.x * gridDim.x) { X[i] = 0.0; } } template __global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X, const int* label, const int N, const int D) { // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file. // CUDA_1D_KERNEL_LOOP(i, N) { for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += blockDim.x * gridDim.x) { int idx = i * D + label[i]; dX[idx] = -dY[i] / X[idx]; } } template __global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X, const T* label, const int N, const int D) { int ids = blockIdx.x * blockDim.x + threadIdx.x; if (ids < N * D) { int row_ids = ids / D; dX[ids] = -label[ids] * dY[row_ids] / X[ids]; } } template class CrossEntropyOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "This kernel only runs on GPU device."); auto x = ctx.Input("X"); auto y = ctx.Output("Y"); auto label = ctx.Input("Label"); auto* x_data = x->data(); y->mutable_data(ctx.GetPlace()); auto* y_data = y->data(); int batch_size = x->dims()[0]; int class_num = x->dims()[1]; int block = 512; if (ctx.Attr("soft_label")) { auto* label_data = ctx.Input("Label")->data(); if (class_num > 512) { SoftCrossEntropyKernel2< T, 512><<( ctx.device_context()) .stream()>>>(y_data, x_data, label_data, class_num); } else { int block_size = pow(2, int(std::log2(class_num))); SoftCrossEntropyKernel1< T><<( ctx.device_context()) .stream()>>>(y_data, x_data, label_data, class_num); } } else { auto* label_data = ctx.Input("Label")->data(); int grid = (batch_size + block - 1) / block; CrossEntropyKernel<<< grid, block, 0, reinterpret_cast( ctx.device_context()) .stream()>>>(y_data, x_data, label_data, batch_size, class_num); } } }; template class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "This kernel only runs on GPU device."); auto x = ctx.Input("X"); auto dx = ctx.Output(framework::GradVarName("X")); auto dy = ctx.Input(framework::GradVarName("Y")); auto label = ctx.Input("Label"); auto* dx_data = dx->mutable_data(ctx.GetPlace()); auto* dy_data = dy->data(); auto* x_data = x->data(); int n = x->dims()[0]; int d = x->dims()[1]; int block = 512; int grid = (n * d + block - 1) / block; zero<<( ctx.device_context()) .stream()>>>(dx_data, n * d); if (ctx.Attr("soft_label")) { auto* label_data = label->data(); SoftCrossEntropyGradientKernel<<< grid, block, 0, reinterpret_cast( ctx.device_context()) .stream()>>>(dx_data, dy_data, x_data, label_data, n, d); } else { auto* label_data = label->data(); CrossEntropyGradientKernel<<< grid, block, 0, reinterpret_cast( ctx.device_context()) .stream()>>>(dx_data, dy_data, x_data, label_data, n, d); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel); REGISTER_OP_GPU_KERNEL(cross_entropy_grad, ops::CrossEntropyGradientOpCUDAKernel);