// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "paddle/fluid/operators/math/math_function.h" namespace paddle { namespace operators { namespace math { template struct CBlas; template <> struct CBlas { template static void VCOPY(ARGS... args) { PADDLE_THROW("Blas VCOPY don't support int8_t"); } }; #ifdef PADDLE_WITH_MKLML template <> struct CBlas { template static void GEMM(ARGS... args) { platform::dynload::cblas_sgemm(args...); } template static float *GEMM_ALLOC(ARGS... args) { return platform::dynload::cblas_sgemm_alloc(args...); } template static void GEMM_PACK(ARGS... args) { platform::dynload::cblas_sgemm_pack(args...); } template static void GEMM_COMPUTE(ARGS... args) { platform::dynload::cblas_sgemm_compute(args...); } template static void GEMM_FREE(ARGS... args) { platform::dynload::cblas_sgemm_free(args...); } #ifdef PADDLE_WITH_LIBXSMM template static void SMM_GEMM(ARGS... args) { libxsmm_sgemm(args...); } #endif template static void AXPY(ARGS... args) { platform::dynload::cblas_saxpy(args...); } template static void VCOPY(ARGS... args) { platform::dynload::cblas_scopy(args...); } template static void GEMV(ARGS... args) { platform::dynload::cblas_sgemv(args...); } template static float DOT(ARGS... args) { return platform::dynload::cblas_sdot(args...); } template static void SCAL(ARGS... args) { platform::dynload::cblas_sscal(args...); } template static float ASUM(ARGS... args) { return platform::dynload::cblas_sasum(args...); } template static void GEMM_BATCH(ARGS... args) { platform::dynload::cblas_sgemm_batch(args...); } template static void VADD(ARGS... args) { platform::dynload::vsAdd(args...); } template static void VSUB(ARGS... args) { platform::dynload::vsSub(args...); } template static void VMUL(ARGS... args) { platform::dynload::vsMul(args...); } template static void VDIV(ARGS... args) { platform::dynload::vsDiv(args...); } template static void VEXP(ARGS... args) { platform::dynload::vsExp(args...); } template static void VSQUARE(ARGS... args) { platform::dynload::vsSqr(args...); } template static void VPOW(ARGS... args) { platform::dynload::vsPowx(args...); } template static void VINV(ARGS... args) { platform::dynload::vsInv(args...); } template static void VMERF(ARGS... args) { platform::dynload::vmsErf(args...); } #if !defined(_WIN32) template static void CSRMM(ARGS... args) { platform::dynload::mkl_scsrmm(args...); } #endif template static void TRSM(ARGS... args) { platform::dynload::cblas_strsm(args...); } }; template <> struct CBlas { template static void GEMM(ARGS... args) { platform::dynload::cblas_dgemm(args...); } template static double *GEMM_ALLOC(ARGS... args) { return platform::dynload::cblas_dgemm_alloc(args...); } template static void GEMM_PACK(ARGS... args) { platform::dynload::cblas_dgemm_pack(args...); } template static void GEMM_COMPUTE(ARGS... args) { platform::dynload::cblas_dgemm_compute(args...); } template static void GEMM_FREE(ARGS... args) { platform::dynload::cblas_dgemm_free(args...); } #ifdef PADDLE_WITH_LIBXSMM template static void SMM_GEMM(ARGS... args) { libxsmm_dgemm(args...); } #endif template static void AXPY(ARGS... args) { platform::dynload::cblas_daxpy(args...); } template static void VCOPY(ARGS... args) { platform::dynload::cblas_dcopy(args...); } template static void GEMV(ARGS... args) { platform::dynload::cblas_dgemv(args...); } template static double DOT(ARGS... args) { return platform::dynload::cblas_ddot(args...); } template static void SCAL(ARGS... args) { platform::dynload::cblas_dscal(args...); } template static double ASUM(ARGS... args) { return platform::dynload::cblas_dasum(args...); } template static void GEMM_BATCH(ARGS... args) { platform::dynload::cblas_dgemm_batch(args...); } template static void VADD(ARGS... args) { platform::dynload::vdAdd(args...); } template static void VSUB(ARGS... args) { platform::dynload::vdSub(args...); } template static void VMUL(ARGS... args) { platform::dynload::vdMul(args...); } template static void VDIV(ARGS... args) { platform::dynload::vdDiv(args...); } template static void VEXP(ARGS... args) { platform::dynload::vdExp(args...); } template static void VSQUARE(ARGS... args) { platform::dynload::vdSqr(args...); } template static void VPOW(ARGS... args) { platform::dynload::vdPowx(args...); } template static void VINV(ARGS... args) { platform::dynload::vdInv(args...); } template static void VMERF(ARGS... args) { platform::dynload::vmdErf(args...); } #if !defined(_WIN32) template static void CSRMM(ARGS... args) { platform::dynload::mkl_dcsrmm(args...); } #endif template static void TRSM(ARGS... args) { platform::dynload::cblas_dtrsm(args...); } }; #else template <> struct CBlas { template static void GEMM(ARGS... args) { cblas_sgemm(args...); } template static void AXPY(ARGS... args) { cblas_saxpy(args...); } template static void VCOPY(ARGS... args) { cblas_scopy(args...); } template static void GEMV(ARGS... args) { cblas_sgemv(args...); } template static void TRSM(ARGS... args) { cblas_strsm(args...); } }; template <> struct CBlas { template static void GEMM(ARGS... args) { cblas_dgemm(args...); } template static void AXPY(ARGS... args) { cblas_daxpy(args...); } template static void VCOPY(ARGS... args) { cblas_dcopy(args...); } template static void GEMV(ARGS... args) { cblas_dgemv(args...); } template static void TRSM(ARGS... args) { cblas_dtrsm(args...); } }; #endif template <> struct CBlas { static void GEMM(...) { PADDLE_THROW("float16 GEMM not supported on CPU"); } static void SMM_GEMM(...) { PADDLE_THROW("float16 SMM_GEMM not supported on CPU"); } static void VMUL(...) { PADDLE_THROW("float16 VMUL not supported on CPU"); } static void VEXP(...) { PADDLE_THROW("float16 VEXP not supported on CPU"); } static void VSQUARE(...) { PADDLE_THROW("float16 VSQUARE not supported on CPU"); } static void VPOW(...) { PADDLE_THROW("float16 VPOW not supported on CPU"); } static void DOT(...) { PADDLE_THROW("float16 DOT not supported on CPU"); }; static void SCAL(...) { PADDLE_THROW("float16 SCAL not supported on CPU"); }; static void ASUM(...) { PADDLE_THROW("float16 ASUM not supported on CPU"); }; #ifdef PADDLE_WITH_MKLML static void GEMM_BATCH(...) { PADDLE_THROW("float16 GEMM_BATCH not supported on CPU"); } #endif }; #ifdef PADDLE_WITH_MKLML template <> template T *Blas::GEMM_ALLOC(const CBLAS_IDENTIFIER id, const int M, const int N, const int K) const { return CBlas::GEMM_ALLOC(id, M, N, K); } template <> template void Blas::GEMM_PACK(const CBLAS_IDENTIFIER id, const CBLAS_TRANSPOSE trans, int M, int N, int K, const T alpha, const T *src, const int ld, T *dst) const { CBlas::GEMM_PACK(CblasRowMajor, id, trans, M, N, K, alpha, src, ld, dst); } template <> template void Blas::GEMM_COMPUTE( int transA, int transB, int M, int N, int K, const T *A, const int lda, const T *B, const int ldb, T beta, T *C, const int ldc) const { CBlas::GEMM_COMPUTE(CblasRowMajor, transA, transB, M, N, K, A, lda, B, ldb, beta, C, ldc); } template <> template void Blas::GEMM_FREE(T *data) const { CBlas::GEMM_FREE(data); } #endif template <> template void Blas::GEMM(CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K, T alpha, const T *A, const T *B, T beta, T *C) const { int lda = (transA == CblasNoTrans) ? K : M; int ldb = (transB == CblasNoTrans) ? N : K; int ldc = N; CBlas::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); } template <> template void Blas::GEMM(bool transA, bool transB, int M, int N, int K, T alpha, const T *A, int lda, const T *B, int ldb, T beta, T *C, int ldc) const { CBlas::GEMM(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans, transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); } template <> template void Blas::GEMM(CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K, T alpha, const T *A, int lda, const T *B, int ldb, T beta, T *C, int ldc) const { CBlas::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); } template template void Blas::MatMul(const framework::Tensor &mat_a, bool trans_a, const framework::Tensor &mat_b, bool trans_b, T alpha, framework::Tensor *mat_out, T beta) const { auto dim_a = mat_a.dims(); auto dim_b = mat_b.dims(); auto dim_out = mat_out->dims(); PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, "The input and output of matmul be matrix"); PADDLE_ENFORCE( mat_a.place() == mat_b.place() && mat_a.place() == mat_out->place(), "The places of matrices must be same"); int M = dim_out[0]; int N = dim_out[1]; int K = !trans_a ? dim_a[1] : dim_a[0]; CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans; this->GEMM(transA, transB, M, N, K, alpha, mat_a.data(), mat_b.data(), beta, mat_out->data()); } template <> template void Blas::AXPY(int n, T alpha, const T *x, T *y) const { CBlas::AXPY(n, alpha, x, 1, y, 1); } template <> template void Blas::VCOPY(int n, const T *x, T *y) const { CBlas::VCOPY(n, x, 1, y, 1); } template <> template void Blas::VADD(int n, const T *x, const T *y, T *z) const { #ifdef PADDLE_WITH_MKLML CBlas::VADD(n, x, y, z); #else if (x == z) { this->template AXPY(n, 1., y, z); } else { this->template VCOPY(n, y, z); this->template AXPY(n, 1., x, z); } #endif } template <> template void Blas::VSUB(int n, const T *x, const T *y, T *z) const { #ifdef PADDLE_WITH_MKLML CBlas::VSUB(n, x, y, z); #else // try to find if openblas support vsub for (int i = 0; i < n; ++i) { z[i] = x[i] - y[i]; } #endif } template <> template void Blas::VMUL(int n, const T *x, const T *y, T *z) const { #ifdef PADDLE_WITH_MKLML CBlas::VMUL(n, x, y, z); #else // try to find if openblas support vmul for (int i = 0; i < n; ++i) { z[i] = x[i] * y[i]; } #endif } template <> template void Blas::VDIV(int n, const T *x, const T *y, T *z) const { #ifdef PADDLE_WITH_MKLML CBlas::VDIV(n, x, y, z); #else // try to find if openblas support vdiv for (int i = 0; i < n; ++i) { z[i] = x[i] / y[i]; } #endif } template <> template void Blas::VEXP(int n, const T *x, T *y) const { #ifdef PADDLE_WITH_MKLML CBlas::VEXP(n, x, y); #else // try to find if openblas support vexp for (int i = 0; i < n; ++i) { y[i] = std::exp(x[i]); } #endif } template <> template void Blas::VSQUARE(int n, const T *x, T *y) const { #ifdef PADDLE_WITH_MKLML CBlas::VSQUARE(n, x, y); #else for (int i = 0; i < n; ++i) { y[i] = x[i] * x[i]; } #endif } template <> template void Blas::VPOW(int n, const T *x, T a, T *y) const { #ifdef PADDLE_WITH_MKLML CBlas::VPOW(n, x, a, y); #else for (int i = 0; i < n; ++i) { y[i] = std::pow(x[i], a); } #endif } template <> template T Blas::DOT(int n, const T *x, const T *y) const { #ifdef PADDLE_WITH_MKLML return CBlas::DOT(n, x, 1, y, 1); #else // try to find if openblas support cblas_dot T sum = 0; for (int i = 0; i < n; ++i) { sum += x[i] * y[i]; } return sum; #endif } template <> template void Blas::SCAL(int n, const T a, T *x) const { #ifdef PADDLE_WITH_MKLML CBlas::SCAL(n, a, x, 1); #else // try to find if openblas support cblas_scal for (int i = 0; i < n; ++i) { x[i] = a * x[i]; } #endif } template <> template T Blas::ASUM(int n, T *x, int inc) const { auto sum = static_cast(0.0); #ifdef PADDLE_WITH_MKLML sum = CBlas::ASUM(n, x, inc); #else // TODO(jczaja): check if openblas does provide cblas_sasum/cblas_dasum for (int c = 0; c < n; ++c) { sum += x[c]; } #endif return sum; } template <> template void Blas::GEMV(bool trans_a, int M, int N, T alpha, const T *A, const T *B, T beta, T *C) const { CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans; CBlas::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1); } template <> template void Blas::BatchedGEMM( CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K, T alpha, const T *A, const T *B, T beta, T *C, int batchCount, int64_t strideA, int64_t strideB) const { #ifdef PADDLE_WITH_MKLML int lda = (transA == CblasNoTrans) ? K : M; int ldb = (transB == CblasNoTrans) ? N : K; int ldc = N; auto a_array = std::vector(batchCount); auto b_array = std::vector(batchCount); auto c_array = std::vector(batchCount); for (int k = 0; k < batchCount; ++k) { a_array[k] = &A[k * strideA]; b_array[k] = &B[k * strideB]; c_array[k] = &C[k * M * N]; } CBlas::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha, a_array.data(), &lda, b_array.data(), &ldb, &beta, c_array.data(), &ldc, 1 /* group_count */, &batchCount); #else for (int k = 0; k < batchCount; ++k) { auto *Ak = &A[k * strideA]; auto *Bk = &B[k * strideB]; auto *Ck = &C[k * M * N]; this->template GEMM(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck); } #endif } #if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) template <> template void Blas::BatchedGEMMWithHead( CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int W1, int H1, int W2, int H2, T alpha, const T *A, const T *B, T beta, T *C, int batchCount, int64_t strideA, int64_t strideB, int64_t head_number, bool split_b_vertical) const { int lda = (transA == CblasNoTrans) ? W1 : H1; int ldb = (transB == CblasNoTrans) ? W2 : H2; auto a_array = std::vector(batchCount); auto b_array = std::vector(batchCount); auto c_array = std::vector(batchCount); if (split_b_vertical) { int ldc = W2; int sub_width = W2 / head_number; for (int i = 0; i < head_number; i++) { int sub_matA_offset = (transA == CblasNoTrans) ? i * (W1 / head_number) : i * (W1 / head_number) * H1; int sub_matB_offset = (transB == CblasNoTrans) ? i * (W2 / head_number) : i * (W2 / head_number) * H2; int sub_matC_offset = i * W2 / head_number; for (int k = 0; k < batchCount; ++k) { a_array[k] = &A[k * strideA] + sub_matA_offset; b_array[k] = &B[k * strideB] + sub_matB_offset; c_array[k] = &C[k * H1 * W2] + sub_matC_offset; } CBlas::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &sub_width, &H2, &alpha, a_array.data(), &lda, b_array.data(), &ldb, &beta, c_array.data(), &ldc, 1 /* group_count */, &batchCount); } } else { PADDLE_ENFORCE_EQ(W1, H2); int ldc = W2 * head_number; int sub_width = W1 / head_number; for (int i = 0; i < head_number; i++) { int sub_matA_offset = (transA == CblasNoTrans) ? i * (W1 / head_number) : i * (W1 / head_number) * H1; int sub_matB_offset = (transB == CblasNoTrans) ? i * (W1 / head_number) * W2 : i * (W1 / head_number); int sub_matC_offset = i * W2; for (int k = 0; k < batchCount; ++k) { a_array[k] = &A[k * strideA] + sub_matA_offset; b_array[k] = &B[k * strideB] + sub_matB_offset; c_array[k] = &C[k * H1 * head_number * W2] + sub_matC_offset; } CBlas::GEMM_BATCH(CblasRowMajor, &transA, &transB, &H1, &W2, &sub_width, &alpha, a_array.data(), &lda, b_array.data(), &ldb, &beta, c_array.data(), &ldc, 1 /* group_count */, &batchCount); } } } #endif template template void Blas::MatMul(const int M, const int N, const int K, const T *A, const T *B, T *C) const { this->template GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K, static_cast(1), A, K, B, N, static_cast(0), C, N); } template <> template void Blas::MatMul(const int M, const int N, const int K, const T *A, const T *B, T *C) const { #ifdef PADDLE_WITH_LIBXSMM // Refer to https://github.com/hfp/libxsmm/blob/master/README.md // But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20; // Since the matrix is very small, // so the unit of calculation is already very fast, // and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead, // use xsmm directly. // Note: SMM use ColMajor const char transa = 'N'; const char transb = 'N'; const T alpha = static_cast(1); const T beta = static_cast(0); CBlas::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta, C, &N); return; #endif CBlas::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K, static_cast(1), A, K, B, N, static_cast(0), C, N); } template template void Blas::MatMul(const framework::Tensor &mat_a, const MatDescriptor &dim_a, const framework::Tensor &mat_b, const MatDescriptor &dim_b, T alpha, framework::Tensor *mat_out, T beta) const { PADDLE_ENFORCE_EQ(dim_a.width_, dim_b.height_); CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans; if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) { this->template GEMM(transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha, mat_a.data(), mat_b.data(), beta, mat_out->data()); } else { PADDLE_ENFORCE(dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0, "dim_a.batch_size should be equal to dim_b.batch_size, or " "one of dim_a.batch_size and dim_b.batch_size should be 0. " "But got dim_a.batch_size = %d, dim_b.batch_size = %d.", dim_a.batch_size_, dim_b.batch_size_); this->template BatchedGEMM( transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha, mat_a.data(), mat_b.data(), beta, mat_out->data(), dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_, dim_a.stride_, dim_b.stride_); } } #if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) /* * Multiple two matrixes with multiple heads * * A new parameter, i.e head_number is added compared to normal MatMul. * The head_number describes the number of heads a matrix is vertically * split. * * When user calls this API, the multiplication of two big matrixes is split * into multiplication of several (head_number_) small matrixes. e.g. if Mat A * is [3, 24] and Mat B is [24, 4], when multiple A and B with head_number as * 4, Mat A will be split as 4 matrix of [3, 6] and Mat B will be * (horizontally) split as 4 matrix of [6, 4]. The result of final matrix * will be 4 matrix of [3, 4], i.e. [3, 16]. * Another example is A is [3, 8], B is [2, 16], head_number is 4. In this * case, A will be split as [3, 2], B will be (vertically) split as * [2, 4]. The final result will be 4 matrix of 4 matrix of [3,4], i.e. [3, 16] */ template template void Blas::MatMulWithHead(const framework::Tensor &mat_a, const MatDescriptor &dim_a, const framework::Tensor &mat_b, const MatDescriptor &dim_b, T alpha, int head_number, framework::Tensor *mat_out, T beta, bool mat_b_split_vertical) const { PADDLE_ENFORCE_EQ(dim_a.width_ % head_number, 0); PADDLE_ENFORCE_GE(head_number, 1); PADDLE_ENFORCE_LE(head_number, dim_a.width_); CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans; if (mat_b_split_vertical) { PADDLE_ENFORCE_EQ(dim_b.height_, dim_a.width_ / head_number); PADDLE_ENFORCE_EQ(dim_b.width_ % head_number, 0); } if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) { int lda = !dim_a.trans_ ? dim_a.width_ : dim_a.height_; int ldb = !dim_b.trans_ ? dim_b.width_ : dim_b.height_; int sub_matA_offset; int sub_matB_offset; int sub_matC_offset; int sub_mat_M = dim_a.height_; int sub_mat_N; int sub_mat_K; int ldc; for (int i = 0; i < head_number; i++) { sub_matA_offset = dim_a.trans_ ? i * (dim_a.width_ / head_number) * dim_a.height_ : i * (dim_a.width_ / head_number); if (mat_b_split_vertical) { sub_matB_offset = dim_b.trans_ ? i * (dim_b.width_ / head_number) * dim_b.height_ : i * (dim_b.width_ / head_number); sub_matC_offset = i * dim_b.width_ / head_number; sub_mat_N = dim_b.width_ / head_number; sub_mat_K = dim_b.height_; ldc = dim_b.width_; } else { sub_matB_offset = dim_b.trans_ ? i * (dim_b.height_ / head_number) : i * (dim_b.height_ / head_number) * dim_b.width_; sub_matC_offset = i * dim_b.width_; sub_mat_N = dim_b.width_; sub_mat_K = dim_a.width_ / head_number; ldc = head_number * dim_b.width_; } this->template GEMM(transA, transB, sub_mat_M, sub_mat_N, sub_mat_K, alpha, mat_a.data() + sub_matA_offset, lda, mat_b.data() + sub_matB_offset, ldb, beta, mat_out->data() + sub_matC_offset, ldc); } } else { PADDLE_ENFORCE_EQ((dim_a.batch_size_ == dim_b.batch_size_ || dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0), true); this->template BatchedGEMMWithHead( transA, transB, dim_a.width_, dim_a.height_, dim_b.width_, dim_b.height_, alpha, mat_a.data(), mat_b.data(), beta, mat_out->data(), dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_, dim_a.stride_, dim_b.stride_, head_number, mat_b_split_vertical); } } #endif template template void Blas::VINV(int n, const T *a, T *y) const { #ifdef PADDLE_WITH_MKLML CBlas::VINV(n, a, y); #else for (int i = 0; i < n; ++i) { y[i] = 1.0 / a[i]; } #endif } template <> template void Blas::VMERF(int n, const T *a, T *y, int64_t mode) const { #ifdef PADDLE_WITH_MKLML CBlas::VMERF(n, a, y, mode); #else for (int i = 0; i < n; ++i) { y[i] = std::erf(a[i]); } #endif } #ifdef PADDLE_WITH_MKLML template <> template void Blas::CSRMM( const char *transa, const int *m, const int *n, const int *k, const T *alpha, const char *matdescra, const T *val, const int *indx, const int *pntrb, const int *pntre, const T *b, const int *ldb, const T *beta, T *c, const int *ldc) const { CBlas::CSRMM(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, beta, c, ldc); } #endif template <> template void Blas::TRSM(CBLAS_SIDE side, CBLAS_UPLO uplo, CBLAS_TRANSPOSE transA, CBLAS_DIAG diag, int M, int N, T alpha, const T *A, int lda, T *B, int ldb) const { CBlas::TRSM(CblasRowMajor, side, uplo, transA, diag, M, N, alpha, A, lda, B, ldb); } } // namespace math } // namespace operators } // namespace paddle