# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import six import sys import json import glob import hashlib import logging import collections import textwrap import warnings import subprocess from contextlib import contextmanager from setuptools.command import bdist_egg from .. import load_op_library from ...fluid import core from ...fluid.framework import OpProtoHolder from ...sysconfig import get_include, get_lib logging.basicConfig( format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO) logger = logging.getLogger("utils.cpp_extension") OS_NAME = sys.platform IS_WINDOWS = OS_NAME.startswith('win') MSVC_COMPILE_FLAGS = [ '/MT', '/wd4819', '/wd4251', '/wd4244', '/wd4267', '/wd4275', '/wd4018', '/wd4190', '/EHsc', '/w', '/DGOOGLE_GLOG_DLL_DECL', '/DBOOST_HAS_STATIC_ASSERT', '/DNDEBUG', '/DPADDLE_USE_DSO' ] MSVC_LINK_FLAGS = ['/MACHINE:X64', 'paddle_custom_op.lib'] COMMON_NVCC_FLAGS = ['-DPADDLE_WITH_CUDA', '-DEIGEN_USE_GPU'] GCC_MINI_VERSION = (5, 4, 0) MSVC_MINI_VERSION = (19, 0, 24215) # Give warning if using wrong compiler WRONG_COMPILER_WARNING = ''' ************************************* * Compiler Compatibility WARNING * ************************************* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Found that your compiler ({user_compiler}) is not compatible with the compiler built Paddle for this platform, which is {paddle_compiler} on {platform}. Please use {paddle_compiler} to compile your custom op. Or you may compile Paddle from source using {user_compiler}, and then also use it compile your custom op. See https://www.paddlepaddle.org.cn/documentation/docs/zh/install/compile/fromsource.html for help with compiling Paddle from source. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ''' # Give warning if used compiler version is incompatible ABI_INCOMPATIBILITY_WARNING = ''' ********************************** * ABI Compatibility WARNING * ********************************** !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Found that your compiler ({user_compiler} == {version}) may be ABI-incompatible with pre-installed Paddle! Please use compiler that is ABI-compatible with GCC >= 5.4 (Recommended 8.2). See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html for ABI Compatibility information !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ''' USING_NEW_CUSTOM_OP_LOAD_METHOD = True DEFAULT_OP_ATTR_NAMES = [ core.op_proto_and_checker_maker.kOpRoleAttrName(), core.op_proto_and_checker_maker.kOpRoleVarAttrName(), core.op_proto_and_checker_maker.kOpNameScopeAttrName(), core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(), core.op_proto_and_checker_maker.kOpDeviceAttrName() ] # NOTE(chenweihang): In order to be compatible with # the two custom op define method, after removing # old method, we can remove them together def use_new_custom_op_load_method(*args): global USING_NEW_CUSTOM_OP_LOAD_METHOD if len(args) == 0: return USING_NEW_CUSTOM_OP_LOAD_METHOD else: assert len(args) == 1 and isinstance(args[0], bool) USING_NEW_CUSTOM_OP_LOAD_METHOD = args[0] @contextmanager def bootstrap_context(): """ Context to manage how to write `__bootstrap__` code in .egg """ origin_write_stub = bdist_egg.write_stub bdist_egg.write_stub = custom_write_stub yield bdist_egg.write_stub = origin_write_stub def load_op_meta_info_and_register_op(lib_filename): if USING_NEW_CUSTOM_OP_LOAD_METHOD: core.load_op_meta_info_and_register_op(lib_filename) else: core.load_op_library(lib_filename) return OpProtoHolder.instance().update_op_proto() def custom_write_stub(resource, pyfile): """ Customized write_stub function to allow us to inject generated python api codes into egg python file. """ _stub_template = textwrap.dedent(""" import os import sys import types import paddle def inject_ext_module(module_name, api_names): if module_name in sys.modules: return sys.modules[module_name] new_module = types.ModuleType(module_name) for api_name in api_names: setattr(new_module, api_name, eval(api_name)) return new_module def __bootstrap__(): cur_dir = os.path.dirname(os.path.abspath(__file__)) so_path = os.path.join(cur_dir, "{resource}") assert os.path.exists(so_path) # load custom op shared library with abs path new_custom_ops = paddle.utils.cpp_extension.load_op_meta_info_and_register_op(so_path) m = inject_ext_module(__name__, new_custom_ops) __bootstrap__() {custom_api} """).lstrip() # Parse registerring op information _, op_info = CustomOpInfo.instance().last() so_path = op_info.so_path new_custom_ops = load_op_meta_info_and_register_op(so_path) assert len( new_custom_ops ) > 0, "Required at least one custom operators, but received len(custom_op) = %d" % len( new_custom_ops) # NOTE: To avoid importing .so file instead of python file because they have same name, # we rename .so shared library to another name, see EasyInstallCommand. filename, ext = os.path.splitext(resource) resource = filename + "_pd_" + ext api_content = [] for op_name in new_custom_ops: api_content.append(_custom_api_content(op_name)) with open(pyfile, 'w') as f: f.write( _stub_template.format( resource=resource, custom_api='\n\n'.join(api_content))) OpInfo = collections.namedtuple('OpInfo', ['so_name', 'so_path']) class CustomOpInfo: """ A global Singleton map to record all compiled custom ops information. """ @classmethod def instance(cls): if not hasattr(cls, '_instance'): cls._instance = cls() return cls._instance def __init__(self): assert not hasattr( self.__class__, '_instance'), 'Please use `instance()` to get CustomOpInfo object!' # NOTE(Aurelius84): Use OrderedDict to save more order information self.op_info_map = collections.OrderedDict() def add(self, op_name, so_name, so_path=None): self.op_info_map[op_name] = OpInfo(so_name, so_path) def last(self): """ Return the lastest insert custom op info. """ assert len(self.op_info_map) > 0 return next(reversed(self.op_info_map.items())) VersionFields = collections.namedtuple('VersionFields', [ 'sources', 'extra_compile_args', 'extra_link_args', 'library_dirs', 'runtime_library_dirs', 'include_dirs', 'define_macros', 'undef_macros', ]) class VersionManager: def __init__(self, version_field): self.version_field = version_field self.version = self.hasher(version_field) def hasher(self, version_field): from paddle.fluid.layers.utils import flatten md5 = hashlib.md5() for field in version_field._fields: elem = getattr(version_field, field) if not elem: continue if isinstance(elem, (list, tuple, dict)): flat_elem = flatten(elem) md5 = combine_hash(md5, tuple(flat_elem)) else: raise RuntimeError( "Support types with list, tuple and dict, but received {} with {}.". format(type(elem), elem)) return md5.hexdigest() @property def details(self): return self.version_field._asdict() def combine_hash(md5, value): """ Return new hash value. DO NOT use `hash()` beacuse it doesn't generate stable value between different process. See https://stackoverflow.com/questions/27522626/hash-function-in-python-3-3-returns-different-results-between-sessions """ md5.update(repr(value).encode()) return md5 def clean_object_if_change_cflags(so_path, extension): """ If already compiling source before, we should check whether cflags have changed and delete the built object to re-compile the source even though source file content keeps unchanaged. """ def serialize(path, version_info): assert isinstance(version_info, dict) with open(path, 'w') as f: f.write(json.dumps(version_info, indent=4, sort_keys=True)) def deserialize(path): assert os.path.exists(path) with open(path, 'r') as f: content = f.read() return json.loads(content) # version file VERSION_FILE = "version.txt" base_dir = os.path.dirname(so_path) so_name = os.path.basename(so_path) version_file = os.path.join(base_dir, VERSION_FILE) # version info args = [getattr(extension, field, None) for field in VersionFields._fields] version_field = VersionFields._make(args) versioner = VersionManager(version_field) if os.path.exists(so_path) and os.path.exists(version_file): old_version_info = deserialize(version_file) so_version = old_version_info.get(so_name, None) # delete shared library file if versison is changed to re-compile it. if so_version is not None and so_version != versioner.version: log_v( "Re-Compiling {}, because specified cflags have been changed. New signature {} has been saved into {}.". format(so_name, versioner.version, version_file)) os.remove(so_path) # upate new version information new_version_info = versioner.details new_version_info[so_name] = versioner.version serialize(version_file, new_version_info) else: # If compile at first time, save compiling detail information for debug. if not os.path.exists(base_dir): os.makedirs(base_dir) details = versioner.details details[so_name] = versioner.version serialize(version_file, details) def prepare_unix_cudaflags(cflags): """ Prepare all necessary compiled flags for nvcc compiling CUDA files. """ cflags = COMMON_NVCC_FLAGS + [ '-ccbin', 'cc', '-Xcompiler', '-fPIC', '--expt-relaxed-constexpr', '-DNVCC' ] + cflags + get_cuda_arch_flags(cflags) return cflags def prepare_win_cudaflags(cflags): """ Prepare all necessary compiled flags for nvcc compiling CUDA files. """ cflags = COMMON_NVCC_FLAGS + ['-w'] + cflags + get_cuda_arch_flags(cflags) return cflags def add_std_without_repeat(cflags, compiler_type, use_std14=False): """ Append -std=c++11/14 in cflags if without specific it before. """ cpp_flag_prefix = '/std:' if compiler_type == 'msvc' else '-std=' if not any(cpp_flag_prefix in flag for flag in cflags): suffix = 'c++14' if use_std14 else 'c++11' cpp_flag = cpp_flag_prefix + suffix cflags.append(cpp_flag) def get_cuda_arch_flags(cflags): """ For an arch, say "6.1", the added compile flag will be ``-gencode=arch=compute_61,code=sm_61``. For an added "+PTX", an additional ``-gencode=arch=compute_xx,code=compute_xx`` is added. """ # TODO(Aurelius84): return [] def normalize_extension_kwargs(kwargs, use_cuda=False): """ Normalize include_dirs, library_dir and other attributes in kwargs. """ assert isinstance(kwargs, dict) # append necessary include dir path of paddle include_dirs = kwargs.get('include_dirs', []) include_dirs.extend(find_paddle_includes(use_cuda)) kwargs['include_dirs'] = include_dirs # append necessary lib path of paddle library_dirs = kwargs.get('library_dirs', []) library_dirs.extend(find_paddle_libraries(use_cuda)) kwargs['library_dirs'] = library_dirs # append compile flags and check settings of compiler extra_compile_args = kwargs.get('extra_compile_args', []) if isinstance(extra_compile_args, dict): for compiler in ['cxx', 'nvcc']: if compiler not in extra_compile_args: extra_compile_args[compiler] = [] if IS_WINDOWS: # TODO(zhouwei): may append compile flags in future pass # append link flags extra_link_args = kwargs.get('extra_link_args', []) extra_link_args.extend(MSVC_LINK_FLAGS) if use_cuda: extra_link_args.extend(['cudadevrt.lib', 'cudart_static.lib']) kwargs['extra_link_args'] = extra_link_args else: add_compile_flag(extra_compile_args, ['-w']) # disable warning # Note(Aurelius84): This marco will impact memory layout of `Tensor`. # We align it automatially with pre-installed Paddle. if core.is_compiled_with_mkldnn(): add_compile_flag(extra_compile_args, ['-DPADDLE_WITH_MKLDNN']) # append link flags extra_link_args = kwargs.get('extra_link_args', []) if use_new_custom_op_load_method(): extra_link_args.append('-lpaddle_custom_op') else: extra_link_args.append('-lpaddle_framework') if use_cuda: extra_link_args.append('-lcudart') kwargs['extra_link_args'] = extra_link_args # add runtime library dirs runtime_library_dirs = kwargs.get('runtime_library_dirs', []) runtime_library_dirs.extend(find_paddle_libraries(use_cuda)) kwargs['runtime_library_dirs'] = runtime_library_dirs kwargs['extra_compile_args'] = extra_compile_args kwargs['language'] = 'c++' return kwargs def find_cuda_home(): """ Use heuristic method to find cuda path """ # step 1. find in $CUDA_HOME or $CUDA_PATH cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') # step 2. find path by `which nvcc` if cuda_home is None: which_cmd = 'where' if IS_WINDOWS else 'which' try: with open(os.devnull, 'w') as devnull: nvcc_path = subprocess.check_output( [which_cmd, 'nvcc'], stderr=devnull) if six.PY3: nvcc_path = nvcc_path.decode() nvcc_path = nvcc_path.rstrip('\r\n') # for example: /usr/local/cuda/bin/nvcc cuda_home = os.path.dirname(os.path.dirname(nvcc_path)) except: if IS_WINDOWS: # search from default NVIDIA GPU path candidate_paths = glob.glob( 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*.*' ) if len(candidate_paths) > 0: cuda_home = candidate_paths[0] else: cuda_home = "/usr/local/cuda" # step 3. check whether path is valid if cuda_home and not os.path.exists( cuda_home) and core.is_compiled_with_cuda(): cuda_home = None warnings.warn( "Not found CUDA runtime, please use `export CUDA_HOME= XXX` to specific it." ) return cuda_home def find_rocm_home(): """ Use heuristic method to find rocm path """ # step 1. find in $ROCM_HOME or $ROCM_PATH rocm_home = os.environ.get('ROCM_HOME') or os.environ.get('ROCM_PATH') # step 2. find path by `which nvcc` if rocm_home is None: which_cmd = 'where' if IS_WINDOWS else 'which' try: with open(os.devnull, 'w') as devnull: hipcc_path = subprocess.check_output( [which_cmd, 'hipcc'], stderr=devnull) if six.PY3: hipcc_path = hipcc_path.decode() hipcc_path = hipcc_path.rstrip('\r\n') # for example: /opt/rocm/bin/hipcc rocm_home = os.path.dirname(os.path.dirname(hipcc_path)) except: rocm_home = "/opt/rocm" # step 3. check whether path is valid if rocm_home and not os.path.exists( rocm_home) and core.is_compiled_with_rocm(): rocm_home = None warnings.warn( "Not found ROCM runtime, please use `export ROCM_PATH= XXX` to specific it." ) return rocm_home def find_cuda_includes(): """ Use heuristic method to find cuda include path """ cuda_home = find_cuda_home() if cuda_home is None: raise ValueError( "Not found CUDA runtime, please use `export CUDA_HOME=XXX` to specific it." ) return [os.path.join(cuda_home, 'include')] def find_rocm_includes(): """ Use heuristic method to find rocm include path """ rocm_home = find_rocm_home() if rocm_home is None: raise ValueError( "Not found ROCM runtime, please use `export ROCM_PATH= XXX` to specific it." ) return [os.path.join(rocm_home, 'include')] def find_paddle_includes(use_cuda=False): """ Return Paddle necessary include dir path. """ # pythonXX/site-packages/paddle/include paddle_include_dir = get_include() third_party_dir = os.path.join(paddle_include_dir, 'third_party') include_dirs = [paddle_include_dir, third_party_dir] if use_cuda: if core.is_compiled_with_rocm(): rocm_include_dir = find_rocm_includes() include_dirs.extend(rocm_include_dir) else: cuda_include_dir = find_cuda_includes() include_dirs.extend(cuda_include_dir) return include_dirs def find_cuda_libraries(): """ Use heuristic method to find cuda static lib path """ cuda_home = find_cuda_home() if cuda_home is None: raise ValueError( "Not found CUDA runtime, please use `export CUDA_HOME=XXX` to specific it." ) if IS_WINDOWS: cuda_lib_dir = [os.path.join(cuda_home, 'lib', 'x64')] else: cuda_lib_dir = [os.path.join(cuda_home, 'lib64')] return cuda_lib_dir def find_rocm_libraries(): """ Use heuristic method to find rocm dynamic lib path """ rocm_home = find_rocm_home() if rocm_home is None: raise ValueError( "Not found ROCM runtime, please use `export ROCM_PATH=XXX` to specific it." ) rocm_lib_dir = [os.path.join(rocm_home, 'lib')] return rocm_lib_dir def find_paddle_libraries(use_cuda=False): """ Return Paddle necessary library dir path. """ # pythonXX/site-packages/paddle/libs paddle_lib_dirs = [get_lib()] if use_cuda: if core.is_compiled_with_rocm(): rocm_lib_dir = find_rocm_libraries() paddle_lib_dirs.extend(rocm_lib_dir) else: cuda_lib_dir = find_cuda_libraries() paddle_lib_dirs.extend(cuda_lib_dir) return paddle_lib_dirs def add_compile_flag(extra_compile_args, flags): assert isinstance(flags, list) if isinstance(extra_compile_args, dict): for args in extra_compile_args.values(): args.extend(flags) else: extra_compile_args.extend(flags) def is_cuda_file(path): cuda_suffix = set(['.cu']) items = os.path.splitext(path) assert len(items) > 1 return items[-1] in cuda_suffix def get_build_directory(verbose=False): """ Return paddle extension root directory to put shared library. It could be specified by ``export PADDLE_EXTENSION_DIR=XXX`` . If not set, ``~/.cache/paddle_extension`` will be used by default. Returns: The root directory of compiling customized operators. Examples: .. code-block:: python from paddle.utils.cpp_extension import get_build_directory build_dir = get_build_directory() print(build_dir) """ root_extensions_directory = os.environ.get('PADDLE_EXTENSION_DIR') if root_extensions_directory is None: dir_name = "paddle_extensions" root_extensions_directory = os.path.join( os.path.expanduser('~/.cache'), dir_name) if IS_WINDOWS: root_extensions_directory = os.path.normpath( root_extensions_directory) elif OS_NAME.startswith('darwin'): # TODO(Aurelius84): consider macOs raise NotImplementedError("Not support Mac now.") log_v("$PADDLE_EXTENSION_DIR is not set, using path: {} by default.". format(root_extensions_directory), verbose) if not os.path.exists(root_extensions_directory): os.makedirs(root_extensions_directory) return root_extensions_directory def parse_op_info(op_name): """ Parse input names and outpus detail information from registered custom op from OpInfoMap. """ from paddle.fluid.framework import OpProtoHolder if op_name not in OpProtoHolder.instance().op_proto_map: raise ValueError( "Please load {} shared library file firstly by `paddle.utils.cpp_extension.load_op_meta_info_and_register_op(...)`". format(op_name)) op_proto = OpProtoHolder.instance().get_op_proto(op_name) in_names = [x.name for x in op_proto.inputs] out_names = [x.name for x in op_proto.outputs] attr_names = [ x.name for x in op_proto.attrs if x.name not in DEFAULT_OP_ATTR_NAMES ] return in_names, out_names, attr_names def _import_module_from_library(module_name, build_directory, verbose=False): """ Load shared library and import it as callable python module. """ if IS_WINDOWS: dynamic_suffix = '.pyd' else: dynamic_suffix = '.so' ext_path = os.path.join(build_directory, module_name + dynamic_suffix) if not os.path.exists(ext_path): raise FileNotFoundError("Extension path: {} does not exist.".format( ext_path)) # load custom op_info and kernels from .so shared library log_v('loading shared library from: {}'.format(ext_path), verbose) op_names = load_op_meta_info_and_register_op(ext_path) # generate Python api in ext_path return _generate_python_module(module_name, op_names, build_directory, verbose) def _generate_python_module(module_name, op_names, build_directory, verbose=False): """ Automatically generate python file to allow import or load into as module """ api_file = os.path.join(build_directory, module_name + '.py') log_v("generate api file: {}".format(api_file), verbose) # write into .py file api_content = [_custom_api_content(op_name) for op_name in op_names] with open(api_file, 'w') as f: f.write('\n\n'.join(api_content)) # load module custom_module = _load_module_from_file(api_file, verbose) return custom_module def _custom_api_content(op_name): params_str, ins_str, attrs_str, outs_str = _get_api_inputs_str(op_name) API_TEMPLATE = textwrap.dedent(""" from paddle.fluid.layer_helper import LayerHelper def {op_name}({inputs}): helper = LayerHelper("{op_name}", **locals()) # prepare inputs and outputs ins = {ins} attrs = {attrs} outs = {{}} out_names = {out_names} for out_name in out_names: # Set 'float32' temporarily, and the actual dtype of output variable will be inferred # in runtime. outs[out_name] = helper.create_variable(dtype='float32') helper.append_op(type="{op_name}", inputs=ins, outputs=outs, attrs=attrs) res = [outs[out_name] for out_name in out_names] return res[0] if len(res)==1 else res """).lstrip() # generate python api file api_content = API_TEMPLATE.format( op_name=op_name, inputs=params_str, ins=ins_str, attrs=attrs_str, out_names=outs_str) return api_content def _load_module_from_file(api_file_path, verbose=False): """ Load module from python file. """ if not os.path.exists(api_file_path): raise FileNotFoundError("File : {} does not exist.".format( api_file_path)) # Unique readable module name to place custom api. log_v('import module from file: {}'.format(api_file_path), verbose) ext_name = "_paddle_cpp_extension_" if six.PY2: import imp module = imp.load_source(ext_name, api_file_path) else: from importlib import machinery loader = machinery.SourceFileLoader(ext_name, api_file_path) module = loader.load_module() return module def _get_api_inputs_str(op_name): """ Returns string of api parameters and inputs dict. """ in_names, out_names, attr_names = parse_op_info(op_name) # e.g: x, y, z param_names = in_names + attr_names params_str = ','.join([p.lower() for p in param_names]) # e.g: {'X': x, 'Y': y, 'Z': z} ins_str = "{%s}" % ','.join( ["'{}' : {}".format(in_name, in_name.lower()) for in_name in in_names]) # e.g: {'num': n} attrs_str = "{%s}" % ",".join([ "'{}' : {}".format(attr_name, attr_name.lower()) for attr_name in attr_names ]) # e.g: ['Out', 'Index'] outs_str = "[%s]" % ','.join(["'{}'".format(name) for name in out_names]) return params_str, ins_str, attrs_str, outs_str def _write_setup_file(name, sources, file_path, build_dir, include_dirs, extra_cxx_cflags, extra_cuda_cflags, link_args, verbose=False): """ Automatically generate setup.py and write it into build directory. """ template = textwrap.dedent(""" import os from paddle.utils.cpp_extension import CppExtension, CUDAExtension, BuildExtension, setup from paddle.utils.cpp_extension import get_build_directory from paddle.utils.cpp_extension.extension_utils import use_new_custom_op_load_method use_new_custom_op_load_method({use_new_method}) setup( name='{name}', ext_modules=[ {prefix}Extension( sources={sources}, include_dirs={include_dirs}, extra_compile_args={{'cxx':{extra_cxx_cflags}, 'nvcc':{extra_cuda_cflags}}}, extra_link_args={extra_link_args})], cmdclass={{"build_ext" : BuildExtension.with_options( output_dir=r'{build_dir}', no_python_abi_suffix=True) }})""").lstrip() with_cuda = False if any([is_cuda_file(source) for source in sources]): with_cuda = True log_v("with_cuda: {}".format(with_cuda), verbose) content = template.format( name=name, prefix='CUDA' if with_cuda else 'Cpp', sources=list2str(sources), include_dirs=list2str(include_dirs), extra_cxx_cflags=list2str(extra_cxx_cflags), extra_cuda_cflags=list2str(extra_cuda_cflags), extra_link_args=list2str(link_args), build_dir=build_dir, use_new_method=use_new_custom_op_load_method()) log_v('write setup.py into {}'.format(file_path), verbose) with open(file_path, 'w') as f: f.write(content) def list2str(args): """ Convert list[str] into string. For example: ['x', 'y'] -> "['x', 'y']" """ if args is None: return '[]' assert isinstance(args, (list, tuple)) args = ["{}".format(arg) for arg in args] return repr(args) def _jit_compile(file_path, verbose=False): """ Build shared library in subprocess """ ext_dir = os.path.dirname(file_path) setup_file = os.path.basename(file_path) # Using interpreter same with current process. interpreter = sys.executable try: py_version = subprocess.check_output([interpreter, '-V']) if six.PY3: py_version = py_version.decode() log_v("Using Python interpreter: {}, version: {}".format( interpreter, py_version.strip()), verbose) except Exception: _, error, _ = sys.exc_info() raise RuntimeError( 'Failed to check Python interpreter with `{}`, errors: {}'.format( interpreter, error)) if IS_WINDOWS: compile_cmd = 'cd /d {} && {} {} build'.format(ext_dir, interpreter, setup_file) else: compile_cmd = 'cd {} && {} {} build'.format(ext_dir, interpreter, setup_file) print("Compiling user custom op, it will cost a few seconds.....") run_cmd(compile_cmd, verbose) def parse_op_name_from(sources): """ Parse registerring custom op name from sources. """ def regex(content): if USING_NEW_CUSTOM_OP_LOAD_METHOD: pattern = re.compile(r'PD_BUILD_OP\(([^,\)]+)\)') else: pattern = re.compile(r'REGISTER_OPERATOR\(([^,]+),') content = re.sub(r'\s|\t|\n', '', content) op_name = pattern.findall(content) op_name = set([re.sub('_grad', '', name) for name in op_name]) return op_name op_names = set() for source in sources: with open(source, 'r') as f: content = f.read() op_names |= regex(content) return list(op_names) def run_cmd(command, verbose=False): """ Execute command with subprocess. """ # logging log_v("execute command: {}".format(command), verbose) try: from subprocess import DEVNULL # py3 except ImportError: DEVNULL = open(os.devnull, 'wb') # execute command try: if verbose: return subprocess.check_call( command, shell=True, stderr=subprocess.STDOUT) else: return subprocess.check_call(command, shell=True, stdout=DEVNULL) except Exception: _, error, _ = sys.exc_info() raise RuntimeError("Failed to run command: {}, errors: {}".format( compile, error)) def check_abi_compatibility(compiler, verbose=False): """ Check whether GCC version on user local machine is compatible with Paddle in site-packages. """ if os.environ.get('PADDLE_SKIP_CHECK_ABI') in ['True', 'true', '1']: return True which = 'where' if IS_WINDOWS else 'which' cmd_out = subprocess.check_output( [which, compiler], stderr=subprocess.STDOUT) compiler_path = os.path.realpath(cmd_out.decode() if six.PY3 else cmd_out).strip() # step 1. if not found any suitable compiler, raise error if not any(name in compiler_path for name in _expected_compiler_current_platform()): warnings.warn( WRONG_COMPILER_WARNING.format( user_compiler=compiler, paddle_compiler=_expected_compiler_current_platform()[0], platform=OS_NAME)) return False version = (0, 0, 0) # clang++ have no ABI compatibility problem if OS_NAME.startswith('darwin'): return True try: if OS_NAME.startswith('linux'): mini_required_version = GCC_MINI_VERSION version_info = subprocess.check_output( [compiler, '-dumpfullversion', '-dumpversion']) if six.PY3: version_info = version_info.decode() version = version_info.strip().split('.') elif IS_WINDOWS: mini_required_version = MSVC_MINI_VERSION compiler_info = subprocess.check_output( compiler, stderr=subprocess.STDOUT) if six.PY3: try: compiler_info = compiler_info.decode('UTF-8') except UnicodeDecodeError: compiler_info = compiler_info.decode('gbk') match = re.search(r'(\d+)\.(\d+)\.(\d+)', compiler_info.strip()) if match is not None: version = match.groups() except Exception: # check compiler version failed _, error, _ = sys.exc_info() warnings.warn('Failed to check compiler version for {}: {}'.format( compiler, error)) return False # check version compatibility assert len(version) == 3 if tuple(map(int, version)) >= mini_required_version: return True warnings.warn( ABI_INCOMPATIBILITY_WARNING.format( user_compiler=compiler, version='.'.join(version))) return False def _expected_compiler_current_platform(): """ Returns supported compiler string on current platform """ if OS_NAME.startswith('darwin'): expect_compilers = ['clang', 'clang++'] elif OS_NAME.startswith('linux'): expect_compilers = ['gcc', 'g++', 'gnu-c++', 'gnu-cc'] elif IS_WINDOWS: expect_compilers = ['cl'] return expect_compilers def log_v(info, verbose=True): """ Print log information on stdout. """ if verbose: logging.info(info)