# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np import paddle import scipy.stats sys.path.append("../") from op_test import OpTest paddle.enable_static() class TestDirichletOp(OpTest): # Because dirichlet random sample have not gradient, we skip gradient check. no_need_check_grad = True def setUp(self): self.op_type = "dirichlet" self.alpha = np.array((1., 2.)) self.sample_shape = (100000, 2) self.inputs = {'Alpha': np.broadcast_to(self.alpha, self.sample_shape)} self.attrs = {} self.outputs = {'Out': np.zeros(self.sample_shape)} def test_check_output(self): self.check_output_customized(self._hypothesis_testing) def _hypothesis_testing(self, outs): self.assertEqual(outs[0].shape, self.sample_shape) self.assertTrue(np.all(outs[0] > 0.0)) self.assertLess( scipy.stats.kstest( outs[0][:, 0], # scipy dirichlet have not cdf, use beta to replace it. scipy.stats.beta(a=self.alpha[0], b=self.alpha[1]).cdf)[0], 0.01)