# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import contextlib import unittest import numpy as np import six import pickle import random import paddle import paddle.fluid as fluid import paddle.distributed as dist import paddle.fluid.dygraph as dygraph from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.fluid import core from paddle.fluid.dygraph.nn import Linear from paddle.fluid.framework import _test_eager_guard from test_dist_base import print_to_err, print_to_out, runtime_main, TestParallelDyGraphRunnerBase seed = 90 RUN_STEP = 20 batch_size = 4 batch_num = 1000 class SimpleNet(fluid.Layer): def __init__(self): super(SimpleNet, self).__init__() self.net_a = Linear(input_dim=10, output_dim=20) self.net_b = Linear(input_dim=20, output_dim=5) self.net_c = Linear(input_dim=5, output_dim=10) def forward(self, x): x = self.net_a(x) x = self.net_b(x) x = self.net_c(x) return x class TestNoSync(TestParallelDyGraphRunnerBase): def get_model(self): model = SimpleNet() train_reader = paddle.batch( fake_sample_reader(), batch_size=batch_size, drop_last=True) optimizer = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters()) return model, train_reader, optimizer def run_one_loop(self, model, optimizer, batch): x_data = np.array([x for x in batch]) x_data = x_data.reshape((-1, 10)) x = paddle.to_tensor(x_data) out = model(x) loss = out.sum() / len(batch) return loss def run_trainer(self, args): if args.eager_mode: self.run_trainer_in_eager_mode(args) else: self.run_trainer_func(args) def run_trainer_with_spawn(self, args): if args.eager_mode: return self.run_trainer_with_spawn_in_eager_mode(args) else: return self.run_trainer_with_spawn_func(args) def run_trainer_func(self, args): if fluid.core.is_compiled_with_cuda(): device_id = int(os.getenv("FLAGS_selected_gpus", "0")) place = fluid.CUDAPlace(device_id) else: assert ("Only support CUDAPlace for now.") with fluid.dygraph.guard(place): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed np.random.seed(seed) random.seed(seed) model, train_reader, opt = self.get_model() if args.update_method == "nccl2": dist.init_parallel_env() print_to_err( type(self).__name__, "begin to prepare context in dygraph with nccl2") model = paddle.DataParallel( model, find_unused_parameters=args.find_unused_parameters) print_to_err(type(self).__name__, "model built in dygraph") return self.model_train(args, model, opt, train_reader) def run_trainer_in_eager_mode(self, args): if fluid.core.is_compiled_with_cuda(): device_id = int(os.getenv("FLAGS_selected_gpus", "0")) place = fluid.CUDAPlace(device_id) else: assert ("Only support CUDAPlace for now.") with fluid.dygraph.guard(place): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed np.random.seed(seed) random.seed(seed) with _test_eager_guard(): model, train_reader, opt = self.get_model() if args.update_method == "nccl2": dist.init_parallel_env() print_to_err( type(self).__name__, "begin to prepare context in dygraph with nccl2") nranks = ParallelEnv().nranks rank = ParallelEnv().local_rank is_master = True if rank == 0 else False store = paddle.fluid.core.TCPStore( "127.0.0.1", args.dist_port, is_master, nranks) group = core.ProcessGroupNCCL(store, rank, nranks) model = paddle.DataParallel( model, process_group=group, find_unused_parameters=args.find_unused_parameters) print_to_err(type(self).__name__, "model built in dygraph") return self.model_train(args, model, opt, train_reader) def model_train(self, args, model, opt, train_reader): out_losses = [] for step_id, data in enumerate(train_reader()): data = self._get_data(data, args) if step_id == RUN_STEP: break if step_id % 3 != 0: if args.update_method == "nccl2": with model.no_sync(): loss = self.run_one_loop(model, opt, data) loss.backward() else: loss = self.run_one_loop(model, opt, data) loss.backward() else: loss = self.run_one_loop(model, opt, data) loss.backward() opt.minimize(loss) print_to_err( type(self).__name__, "loss at step %d: %f" % (step_id, loss.numpy())) out_losses.append(loss.numpy()) model.clear_gradients() print_to_out(out_losses) return out_losses def fake_sample_reader(): def __reader__(): for i in range(batch_num): x_data = np.random.random_sample((10, )).astype('float32') yield x_data return __reader__ if __name__ == "__main__": runtime_main(TestNoSync)