# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import unittest import paddle import paddle.static from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest @unittest.skipIf(not paddle.is_compiled_with_ipu(), "core is not compiled with IPU") class TestBase(IPUOpTest): def setUp(self): self.set_atol() self.set_data_feed() self.set_feed_attr() self.set_attrs() def set_atol(self): self.atol = 1e-6 def set_data_feed(self): self.feed = { "image": np.random.uniform(size=[1, 3, 10, 10]).astype('float32'), } def set_feed_attr(self): self.feed_shape = [x.shape for x in self.feed.values()] self.feed_list = list(self.feed.keys()) self.feed_dtype = [x.dtype for x in self.feed.values()] def set_attrs(self): self.attrs = { "optimizer": 'sgd', "weight_decay": 0.0, "loss_scaling": 1.0, } def _test_optimizer(self, run_ipu=True): scope = paddle.static.Scope() main_prog = paddle.static.Program() startup_prog = paddle.static.Program() main_prog.random_seed = self.SEED startup_prog.random_seed = self.SEED np.random.seed(self.SEED) with paddle.static.scope_guard(scope): with paddle.static.program_guard(main_prog, startup_prog): image = paddle.static.data( name='image', shape=[1, 3, 10, 10], dtype='float32') conv1 = paddle.static.nn.conv2d( image, num_filters=3, filter_size=3, bias_attr=False) loss = paddle.mean(conv1) weight_decay = self.attrs['weight_decay'] opt = paddle.optimizer.SGD(learning_rate=1e-1, weight_decay=weight_decay) if self.attrs['optimizer'] == 'adam': opt = paddle.optimizer.Adam( learning_rate=1e-1, weight_decay=weight_decay) elif self.attrs['optimizer'] == 'lamb': opt = paddle.optimizer.Lamb( learning_rate=1e-1, lamb_weight_decay=weight_decay) opt.minimize(loss) if run_ipu: place = paddle.IPUPlace() else: place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(startup_prog) if run_ipu: feed_list = [image.name] fetch_list = [loss.name] ipu_strategy = paddle.static.IpuStrategy() ipu_strategy.set_graph_config(is_training=True) ipu_strategy.set_options({ 'loss_scaling': self.attrs["loss_scaling"] }) if "use_no_bias_optimizer" in self.attrs.keys(): ipu_strategy.set_options({ "use_no_bias_optimizer": self.attrs["use_no_bias_optimizer"] }) if "accl1_type" in self.attrs.keys(): ipu_strategy.set_options({ "accl1_type": self.attrs["accl1_type"] }) program = paddle.static.IpuCompiledProgram( main_prog, ipu_strategy=ipu_strategy).compile(feed_list, fetch_list) else: program = main_prog result = [] for epoch in range(100): loss_res = exe.run(program, feed=self.feed, fetch_list=[loss]) result.append(loss_res) return np.array(result) def test(self): # cpu and ipu dimenstion mismatch, cpu:(100, 1, 1), ipu:(100, 1) ipu_loss = self._test_optimizer(True).flatten() cpu_loss = self._test_optimizer(False).flatten() self.assertTrue(np.allclose(ipu_loss, cpu_loss, atol=self.atol)) @unittest.skip('do not support L2 regularization') class TestSGD(TestBase): def set_attrs(self): self.attrs = { "optimizer": 'sgd', "weight_decay": 0.1, "loss_scaling": 2.0, } @unittest.skip('do not support L2 regularization') class TestAdamCase1(TestBase): def set_attrs(self): self.attrs = { "optimizer": 'adam', "weight_decay": 0.1, "loss_scaling": 3.0, } class TestAdamCase2(TestBase): def set_attrs(self): self.attrs = { "optimizer": 'adam', "weight_decay": 0.0, "loss_scaling": 4.0, } @unittest.skip('cpu do not support AdamNoBias') class TestAdamNoBias(TestBase): def set_attrs(self): self.attrs = { "optimizer": 'adam', "weight_decay": 0.0, "loss_scaling": 4.0, "use_no_bias_optimizer": True, } @unittest.skip('cpu do not support FLOAT16') class TestAdamCase3(TestBase): def set_attrs(self): self.attrs = { "optimizer": 'adam', "weight_decay": 0.0, "loss_scaling": 4.0, "accl1_type": "FLOAT16", } @unittest.skip('seems cpu output wrong') class TestLambCase1(TestBase): def set_attrs(self): self.attrs = { "optimizer": 'lamb', "weight_decay": 0.0, "loss_scaling": 5.0, } @unittest.skip('seems cpu output wrong') class TestLamb(TestBase): def set_attrs(self): self.attrs = { "optimizer": 'lamb', "weight_decay": 0.1, "loss_scaling": 6.0, } @unittest.skip('cpu do not support LambNoBias') class TestLambNoBias(TestBase): def set_attrs(self): self.attrs = { "optimizer": 'lamb', "weight_decay": 0.1, "loss_scaling": 6.0, "use_no_bias_optimizer": True } @unittest.skip('cpu do not support FLOAT16') class TestLambCase2(TestBase): def set_attrs(self): self.attrs = { "optimizer": 'lamb', "weight_decay": 0.1, "loss_scaling": 6.0, "accl1_type": "FLOAT16" } if __name__ == "__main__": unittest.main()