/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/parallel_executor.h" #include #include #include #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/platform/nccl_helper.h" #endif #include "paddle/fluid/framework/details/multi_devices_graph_builder.h" #include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { namespace framework { class ParallelExecutorPrivate { public: explicit ParallelExecutorPrivate(const std::vector &places) : places_(places) {} std::vector places_; std::vector local_scopes_; Scope *global_scope_; std::unique_ptr executor_; #ifdef PADDLE_WITH_CUDA std::unique_ptr nccl_ctxs_; #endif std::vector> var_types_; bool own_local_scope; }; std::vector &ParallelExecutor::GetLocalScopes() { return member_->local_scopes_; } ParallelExecutor::ParallelExecutor( size_t num_threads, bool use_event, const std::vector &places, const std::unordered_set ¶ms, const std::unordered_set &bcast_vars, const ProgramDesc &main_program, const std::string &loss_var_name, Scope *scope, const std::vector &local_scopes, bool allow_op_delay, bool use_default_grad_scale, size_t num_trainers, size_t trainer_id) : member_(new ParallelExecutorPrivate(places)) { member_->global_scope_ = scope; // Step 1. Bcast the params to devs. // Create local scopes if (local_scopes.empty()) { member_->own_local_scope = true; member_->local_scopes_.emplace_back(member_->global_scope_); for (size_t i = 1; i < member_->places_.size(); ++i) { member_->local_scopes_.emplace_back(&scope->NewScope()); } } else { member_->own_local_scope = false; PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size()); for (size_t i = 0; i < member_->places_.size(); ++i) { member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope()); } } // Bcast Parameters to all GPUs #ifdef PADDLE_WITH_CUDA auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME); ncclUniqueId *nccl_id = nullptr; if (nccl_id_var != nullptr) { nccl_id = nccl_id_var->GetMutable(); } member_->nccl_ctxs_.reset(new platform::NCCLContextMap( member_->places_, nccl_id, num_trainers, trainer_id)); #endif if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 && local_scopes.empty()) { // Is CUDA BCastParamsToGPUs(bcast_vars); } // Startup Program has been run. All local scopes has correct parameters. // Step 2. Convert main_program to SSA form and dependency graph. Also, insert // ncclOp #ifdef PADDLE_WITH_CUDA details::MultiDevSSAGraphBuilder builder( member_->places_, loss_var_name, params, member_->local_scopes_, member_->nccl_ctxs_.get(), use_default_grad_scale); #else details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name, params, member_->local_scopes_, use_default_grad_scale); #endif auto graph = builder.Build(main_program); member_->executor_.reset(new details::ThreadedSSAGraphExecutor( num_threads, use_event, member_->local_scopes_, places, std::move(graph), allow_op_delay)); // Step 3. Create vars in each scope; for (auto *var : main_program.Block(0).AllVars()) { member_->var_types_.emplace_back(var->Name(), var->GetType(), var->Persistable()); } } void ParallelExecutor::BCastParamsToGPUs( const std::unordered_set &vars) const { #ifdef PADDLE_WITH_CUDA auto *main_scope = member_->local_scopes_[0]; for (auto &var : vars) { auto *main_var = main_scope->FindVar(var); if (main_var == nullptr || !main_var->IsType()) { continue; } auto &main_tensor = main_var->Get(); auto &dims = main_tensor.dims(); if (paddle::platform::is_gpu_place(main_tensor.place())) { size_t numel = main_tensor.numel(); ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type()); platform::NCCLGroupGuard guard; for (size_t i = 0; i < member_->places_.size(); ++i) { auto place = member_->places_[i]; void *buffer; if (i == 0) { buffer = const_cast(main_tensor.data()); } else { auto local_scope = member_->local_scopes_[i]; auto *t = local_scope->Var(var)->GetMutable(); t->Resize(dims); buffer = t->mutable_data(place, main_tensor.type()); } auto &nccl_ctx = member_->nccl_ctxs_->at(place); platform::dynload::ncclBcast(buffer, numel, data_type, 0, nccl_ctx.comm_, nccl_ctx.stream()); } } else { platform::CPUPlace cpu; for (size_t i = 1; i < member_->places_.size(); ++i) { auto local_scope = member_->local_scopes_[i]; auto *t = local_scope->Var(var)->GetMutable(); t->Resize(dims); t->mutable_data(cpu, main_tensor.type()); paddle::framework::TensorCopy(main_tensor, cpu, t); } } member_->nccl_ctxs_->WaitAll(); } #else PADDLE_THROW("Not compiled with CUDA"); #endif } void ParallelExecutor::Run(const std::vector &fetch_tensors, const std::string &fetched_var_name) { platform::RecordBlock b(0); // Create local scopes. for (auto it = member_->local_scopes_.rbegin(); it != member_->local_scopes_.rend(); ++it) { auto &scope = *it; Scope &local_scope = scope->NewScope(); *scope->Var(details::kLocalExecScopeName)->GetMutable() = &local_scope; for (auto &name_type_pair : member_->var_types_) { if (scope->FindVar(std::get<0>(name_type_pair)) != nullptr) { continue; } if (std::get<2>(name_type_pair)) { // Persistable InitializeVariable(scope->Var(std::get<0>(name_type_pair)), std::get<1>(name_type_pair)); } else { InitializeVariable(local_scope.Var(std::get<0>(name_type_pair)), std::get<1>(name_type_pair)); } } } auto fetch_data = member_->executor_->Run(fetch_tensors); *member_->global_scope_->Var(fetched_var_name)->GetMutable() = fetch_data; // Wait All computational streams for (auto p : member_->places_) { platform::DeviceContextPool::Instance().Get(p)->Wait(); } for (auto &scope : member_->local_scopes_) { auto &local_scope = *scope->Var(details::kLocalExecScopeName)->GetMutable(); scope->DeleteScope(local_scope); } } void ParallelExecutor::FeedTensorsIntoLocalScopes( const std::vector> &tensors) { PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size()); for (size_t i = 0; i < tensors.size(); ++i) { auto &map = tensors[i]; auto *scope = member_->local_scopes_[i]; for (auto &pair : map) { auto *trg = scope->Var(pair.first)->GetMutable(); trg->ShareDataWith(pair.second); trg->set_lod(pair.second.lod()); } } } void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes( const std::unordered_map &tensors) { for (auto pair : tensors) { auto lod_tensors = pair.second.SplitLoDTensor(member_->places_); PADDLE_ENFORCE_EQ( member_->places_.size(), lod_tensors.size(), "The number of samples of current batch is less than the count of " "devices, currently, it is not allowed. (%d vs %d)", member_->places_.size(), lod_tensors.size()); for (size_t j = 0; j < member_->places_.size(); ++j) { // TODO(panxy0718): Do I need to delete this var? auto t = member_->local_scopes_[j]->Var(pair.first)->GetMutable(); t->ShareDataWith(lod_tensors[j]); t->set_lod(lod_tensors[j].lod()); } } } ParallelExecutor::~ParallelExecutor() { if (member_->own_local_scope) { for (size_t i = 1; i < member_->local_scopes_.size(); ++i) { member_->global_scope_->DeleteScope(member_->local_scopes_[i]); } } } } // namespace framework } // namespace paddle