#include "adadelta_optimizer.h" #include #include namespace paddle { namespace optimizer { void AdadeltaOptimizer::set_weight(Tensor* p) { size_t size = p->size(); real* gptr = new real[size]; accum_gradient = new Tensor(gptr, size); real* dptr = new real[size]; accum_delta = new Tensor(dptr, size); real* dptr_current = new real[size]; update_delta = new Tensor(dptr_current, size); } void AdadeltaOptimizer::update(const Tensor* gradient) { num_sample_passed += 1; double learning_rate = lr_policy->get_learning_rate(num_sample_passed); Tensor& param = *parameter_; const Tensor& grad = *gradient; Tensor& accum_g = *accum_gradient; Tensor& accum_d = *accum_delta; Tensor& update_d = *update_delta; for (size_t i = 0; i < param.size(); ++i) { accum_g[i] = rho * accum_g[i] + (1.0 - rho) * grad[i] * grad[i]; update_d[i] = std::sqrt(accum_d[i] + epsilon) / std::sqrt(accum_g[i] + epsilon) * grad[i]; accum_d[i] = rho * accum_d[i] + (1.0 - rho) * update_d[i] * update_d[i]; param[i] -= learning_rate * update_d[i] + learning_rate * decay * param[i]; } } } // namespace optimizer } // namespace paddle