# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test fleet metric.""" from __future__ import print_function import numpy as np import paddle import paddle.fluid as fluid import os import unittest import paddle.distributed.fleet.metrics.metric as metric from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet class TestFleetMetric(unittest.TestCase): """Test cases for fleet metric.""" def setUp(self): """Set up, set envs.""" class FakeFleet: """Fake fleet only for test.""" def __init__(self): """Init.""" self.gloo = fluid.core.Gloo() self.gloo.set_rank(0) self.gloo.set_size(1) self.gloo.set_prefix("123") self.gloo.set_iface("lo") self.gloo.set_hdfs_store("./tmp_test_metric", "", "") self.gloo.init() def _all_reduce(self, input, output, mode="sum"): """All reduce using gloo.""" input_list = [i for i in input] ans = self.gloo.all_reduce(input_list, mode) for i in range(len(ans)): output[i] = 1 def _barrier_worker(self): """Fake barrier worker, do nothing.""" pass self.fleet = FakeFleet() fleet._role_maker = self.fleet def test_metric_1(self): """Test cases for metrics.""" train = fluid.Program() startup = fluid.Program() with fluid.program_guard(train, startup): t = fluid.layers.create_global_var( shape=[1, 1], value=1, dtype='int64', persistable=True, force_cpu=True) t1 = fluid.layers.create_global_var( shape=[1, 1], value=1, dtype='int64', persistable=True, force_cpu=True) place = fluid.CPUPlace() exe = fluid.Executor(place) scope = fluid.Scope() with fluid.scope_guard(scope): exe.run(startup) metric.sum(t, scope) metric.max(t, scope) metric.min(t, scope) metric.auc(t, t1, scope) metric.mae(t1, 3, scope) metric.rmse(t1, 3, scope) metric.mse(t1, 3, scope) metric.acc(t, t1, scope) metric.sum(str(t.name), scope) metric.max(str(t.name), scope) metric.min(str(t.name), scope) metric.auc(str(t1.name), str(t.name), scope) metric.mae(str(t1.name), 3, scope) metric.rmse(str(t1.name), 3, scope) metric.mse(str(t1.name), 3, scope) metric.acc(str(t.name), str(t1.name), scope) arr = np.array([1, 2, 3, 4]) metric.sum(arr) metric.max(arr) metric.min(arr) arr1 = np.array([[1, 2, 3, 4]]) arr2 = np.array([[1, 2, 3, 4]]) arr3 = np.array([1, 2, 3, 4]) metric.auc(arr1, arr2) metric.mae(arr, 3) metric.rmse(arr, 3) metric.mse(arr, 3) metric.acc(arr, arr3) if __name__ == "__main__": unittest.main()