// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/selected_rows/adam_kernel.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/math/selected_rows_functor.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/common/amp_type_traits.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/copy_kernel.h" #include "paddle/phi/kernels/funcs/adam_functors.h" #include "paddle/phi/kernels/funcs/for_range.h" namespace phi { namespace sr { template __global__ void UpdateBetaPow(T beta1, T beta2, const T* beta1_pow_, const T* beta2_pow_, T* beta1_pow_out, T* beta2_pow_out) { *beta1_pow_out = beta1 * beta1_pow_[0]; *beta2_pow_out = beta2 * beta2_pow_[0]; } template __global__ void SparseAdamCUDAKernelREG(MT beta1, MT beta2, MT epsilon, const MT beta1_pow, const MT beta2_pow, const MT* mom1_, MT* mom1_out_, const MT* mom2_, MT* mom2_out_, const MT* lr_, const T* grad_, const T* param_, T* param_out_, const MT* master_param, MT* master_param_out, const int64_t* rows_, int64_t row_numel, int64_t row_count, bool lazy_mode, int ndim) { int id = blockIdx.x * blockDim.x + threadIdx.x; MT lr = *lr_; for (; id < ndim; id += blockDim.x * gridDim.x) { auto row_idx = phi::funcs::BinarySearch(rows_, row_count, id / row_numel); if (lazy_mode && row_idx < 0) { return; } else { MT mom1 = mom1_[id]; MT mom2 = mom2_[id]; MT p = master_param ? master_param[id] : static_cast(param_[id]); MT g = row_idx >= 0 ? static_cast(grad_[row_idx * row_numel + id % row_numel]) : static_cast(0); mom1 = beta1 * mom1 + (static_cast(1.0) - beta1) * g; mom2 = beta2 * mom2 + (static_cast(1.0) - beta2) * g * g; MT denom = (sqrt(mom2) / sqrt(static_cast(1.0) - beta2_pow)) + epsilon; p += (mom1 / denom) * (-(lr / (static_cast(1.0) - beta1_pow))); // Write back to global memory mom1_out_[id] = mom1; mom2_out_[id] = mom2; param_out_[id] = static_cast(p); if (master_param_out) { master_param_out[id] = p; } } } } template void AdamDenseParamSparseGradKernel( const Context& dev_ctx, const DenseTensor& param, const SelectedRows& grad, const DenseTensor& learning_rate, const DenseTensor& moment1, const DenseTensor& moment2, const DenseTensor& beta1_pow, const DenseTensor& beta2_pow, paddle::optional master_param, paddle::optional skip_update, const Scalar& beta1, const Scalar& beta2, const Scalar& epsilon, bool lazy_mode, int64_t min_row_size_to_use_multithread, bool multi_precision, bool use_global_beta_pow, DenseTensor* param_out, DenseTensor* moment1_out, DenseTensor* moment2_out, DenseTensor* beta1_pow_out, DenseTensor* beta2_pow_out, DenseTensor* master_param_outs) { using MPDType = typename phi::dtype::MPTypeTrait::Type; VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow; bool skip_update_ = false; if (skip_update.is_initialized()) { PADDLE_ENFORCE_EQ( skip_update->numel(), 1, errors::InvalidArgument("Input(SkipUpdate) size must be 1, but get %d", skip_update->numel())); std::vector skip_update_vec; paddle::framework::TensorToVector(*skip_update, dev_ctx, &skip_update_vec); skip_update_ = skip_update_vec[0]; } // skip_update=true, just copy input to output, and TensorCopy will call // mutable_data if (skip_update_) { VLOG(4) << "Adam skip update"; phi::Copy(dev_ctx, param, dev_ctx.GetPlace(), false, param_out); phi::Copy(dev_ctx, moment1, dev_ctx.GetPlace(), false, moment1_out); phi::Copy(dev_ctx, moment2, dev_ctx.GetPlace(), false, moment2_out); phi::Copy(dev_ctx, beta1_pow, dev_ctx.GetPlace(), false, beta1_pow_out); phi::Copy(dev_ctx, beta2_pow, dev_ctx.GetPlace(), false, beta2_pow_out); return; } MPDType beta1_ = beta1.to(); MPDType beta2_ = beta2.to(); MPDType epsilon_ = epsilon.to(); VLOG(3) << "beta1_pow.numel() : " << beta1_pow.numel() << "beta2_pow.numel() : " << beta2_pow.numel(); VLOG(3) << "param.numel(): " << param.numel(); PADDLE_ENFORCE_EQ( beta1_pow_out->numel(), 1, errors::InvalidArgument("beta1 pow output size should be 1, but received " "value is:%d.", beta1_pow_out->numel())); PADDLE_ENFORCE_EQ( beta2_pow_out->numel(), 1, errors::InvalidArgument("beta2 pow output size should be 1, but received " "value is:%d.", beta2_pow_out->numel())); const MPDType* master_in_data = multi_precision ? master_param->data() : nullptr; MPDType* master_out_data = multi_precision ? dev_ctx.template Alloc(master_param_outs) : nullptr; if (grad.rows().size() == 0) { VLOG(3) << "grad row size is 0!!"; return; } std::vector cpu_rows(grad.rows().begin(), grad.rows().end()); bool is_strict_sorted = true; for (size_t i = 1; i < cpu_rows.size(); ++i) { if (cpu_rows[i - 1] >= cpu_rows[i]) { is_strict_sorted = false; break; } } phi::SelectedRows tmp_grad_merge; const phi::SelectedRows* grad_merge_ptr; if (is_strict_sorted) { grad_merge_ptr = &grad; } else { // merge duplicated rows if any. // The rows of grad_merge have been sorted inside MergeAdd functor paddle::operators::math::scatter::MergeAdd merge_func; merge_func(dev_ctx, grad, &tmp_grad_merge, true); grad_merge_ptr = &tmp_grad_merge; } auto& grad_merge = *grad_merge_ptr; auto& grad_tensor = grad_merge.value(); const T* grad_data = grad_tensor.template data(); auto* grad_merge_rows = &grad_merge.rows(); paddle::framework::MixVector mixv_grad_merge_rows(grad_merge_rows); const int64_t* rows = mixv_grad_merge_rows.Data(dev_ctx.GetPlace()); auto row_numel = grad_tensor.numel() / grad_merge.rows().size(); if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) { int threads = 512; int ndim = param.numel(); int blocks = (ndim + threads - 1) / threads; SparseAdamCUDAKernelREG<<>>( beta1_, beta2_, epsilon_, *beta1_pow.data(), *beta2_pow.data(), moment1.data(), dev_ctx.template Alloc(moment1_out), moment2.data(), dev_ctx.template Alloc(moment2_out), learning_rate.data(), grad_data, param.data(), dev_ctx.template Alloc(param_out), master_in_data, master_out_data, rows, row_numel, grad_merge.rows().size(), lazy_mode, ndim); if (!use_global_beta_pow) { // Update with cpu dev_ctx.template HostAlloc(beta1_pow_out)[0] = beta1_ * beta1_pow.data()[0]; dev_ctx.template HostAlloc(beta2_pow_out)[0] = beta2_ * beta2_pow.data()[0]; } } else { funcs::SparseAdamFunctor functor( beta1_, beta2_, epsilon_, beta1_pow.data(), beta2_pow.data(), moment1.data(), dev_ctx.template Alloc(moment1_out), moment2.data(), dev_ctx.template Alloc(moment2_out), learning_rate.data(), grad_data, param.data(), dev_ctx.template Alloc(param_out), master_in_data, master_out_data, rows, row_numel, grad_merge.rows().size(), lazy_mode); // FIXME(minqiyang): remove BinarySearch in GPU later funcs::ForRange for_range(dev_ctx, param.numel()); for_range(functor); if (!use_global_beta_pow) { // update beta1 and beta2 UpdateBetaPow<<<1, 32, 0, dev_ctx.stream()>>>( beta1_, beta2_, beta1_pow.data(), beta2_pow.data(), dev_ctx.template Alloc(beta1_pow_out), dev_ctx.template Alloc(beta2_pow_out)); } } } } // namespace sr } // namespace phi PD_REGISTER_KERNEL(adam_dense_param_sparse_grad, GPU, ALL_LAYOUT, phi::sr::AdamDenseParamSparseGradKernel, float, double, phi::dtype::float16) {}